A
题目大意:给你四个区间,分别是1-99,100-199,200-299,300-399,然后给你一个数小于299,问你这个数到下一个区间的大小是多少
直接判断在哪个区间然后输出下一个区间起点减去这个数就行了
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,a[N];
int main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n;
if(n>=1&&n<=99)cout<<100-n<<endl;
else if(n>=100&&n<=199)cout<<200-n<<endl;
else if(n>=200&&n<=299)cout<<300-n<<endl;
else if(n>=300&&n<=399)cout<<"^^^^"<<endl;
}
B
题目大意:每个人的都有n个头发值,每天每个头发都会+1长度,你要输出至少有p个头发的值大于等于t的时候的天数,如果一开始就有至少p个头发值大于等于t,那么输出0就行了。
暴力模拟头发增长的天数,如果满足条件就退出输出当前天数就好了。
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,a[N],t,p;
int main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>t>>p;
for(int i=1;i<=n;i++)cin>>a[i];
int ans=0;
while(1)
{
int num=0;
for(int i=1;i<=n;i++)
{
if(a[i]>=t)num++;
}
if(num>=p)break;
for(int i=1;i<=n;i++)
{
a[i]++;
}
ans++;
}
cout<<ans<<endl;
}
C
题目大意:给你一串字符串,打乱顺序重新排列以后的子串不包括长度为k的回文字符串,统计这一类字符串出现的次数,然后输出这个值。
全排列这个字符串然后暴力判断就行了,我这里用的深搜跑一遍全排列,问就是不会用全排列函数,会用的话应该能提早十分钟交。
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,ans=0,b[30],k;
string a,str;
int pan(int l,int r)
{
while(l<r)
{
if(a[l]!=a[r])return 0;
l++;
r--;
}
return 1;
}
int panduan()
{
for(int i=1;i+k-1<=n;i++)
{
if(pan(i,i+k-1))return 0;
}
return 1;
}
int p=0;
void dfs(int num)
{
if(num==n)
{
p++;
if(panduan())ans++;
return;
}
for(int i=1;i<=26;i++)
{
if(b[i]!=0)
{
a[++num]=i+'a'-1;
b[i]--;
dfs(num);
num--;
b[i]++;
}
}
}
int main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;
cin>>str;
for(int i=0;i<n;i++)b[str[i]-'a'+1]++;
dfs(0);
cout<<ans<<endl;
}
D
题目大意:给你一个n,让你输出第n大的回文数字。
题目很短,但是很难。
我打表出来前50000个,也没发现什么规律,但是回文这个属性代表着这个数字的前一半和后一半是相同的,那么我们只需要考虑前一半的数字就行了。
然后发现前一半数字一定是以100...00为第一个数字,一直到最后一个数字为999....9999。比如三位数字,101是他的第一个数,999是他的最后一个数,所以就能发现实际上在偶数位数和它下一个的奇数位数,他们各自的第一个值和最后一个值之间的数量是相同的,也就是101到999和1001到9999这两对数之间的数量是相同的,也是因为回文数只用看前一半就行了。
并且,在数位为3和4的时候之间的数量为90,数位为5和6的时候数量为900,呈现一个乘十的关系。
所以我们只要先得到这个第n大的回文数是第几位,然后再得到他在这个位数里面处于第几个,在把这个数镜像复制到后一半,那么这个数就是我们要得到的数。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=1e5+10;
int num,n,p[N];
int panduan(int x)
{
int l=0,r=0;
string a;
if(x==0)a+='0',r++;
while(x!=0)
{
a+='0'+x%10;
x/=10;
r++;
}
r--;
while(l<r)
{
if(a[l]!=a[r])return 0;
l++;
r--;
}
return 1;
}
signed main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
for(int i=0;i<=50000;i++)
{
if(panduan(i))
{
num++;
//cout<<num<<" "<<i<<endl;
p[num]=i;
}
}
cin>>n;
if(n<=19)cout<<p[n]<<endl;
else
{
//cout<<p[n]<<endl;
n-=19;
int w=3,t=90;
while(n>t)
{
n-=t;
w++;
if(w%2==1)t*=10;
}
n--;
int ans=1;
for(int i=1;i<=(w+1)/2-1;i++)ans*=10;
ans+=n;
int a[20],la=0;
int tt=ans;
while(tt!=0)
{
a[++la]=tt%10;
tt/=10;
}
cout<<ans;
if(w%2==1)for(int i=2;i<=la;i++)cout<<a[i];
else for(int i=1;i<=la;i++)cout<<a[i];
cout<<endl;
/*for(int i=1;i<=la;i++)cout<<a[i];
cout<<endl;*/
}
}
比赛的时候还以为要开高精度,结果写了个高精度加法还要处理一遍,写了依托构式代码,查的我想死了,写了一个小时才改对。但是赛后发现其实n等于1e18的时候,他的位数是26,也就是我们只要枚举13位就行了,所以直接整形数字相加就行了。
E
题目大意:有H*W数量的岛屿,每个岛屿都有他对应的海平面。每天海平面都会上升一个高度,给出Y天,要输出每天的岛屿面积数量,一直到Y天。
这题如果单纯以每天的海平面高度来深搜,到底还有多少个岛屿面积是高于海平面的话,复杂度直接干到O(H*W*Y)了。所以我们要优化这个深搜的复杂度。首先,海平面是一个一个上升的,只有海平面高度高于这个岛的高度,这个岛才有可能被淹没。其次,如果这个岛周边没有已经被淹没的岛或者周边是边界的话,这个岛也不会被淹,也就是不需要深搜进去判断其他岛会不会被淹。
所以要先对岛屿的高度进行排序,使得高度更低的排在前面优先判断他是否被淹,再多几个判断条件就行了
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=1e3+10;
int n,m,t,ans,num=0;
int a[N][N],bj[N][N];
struct tree
{
int x;
int y;
int val;
}s[N*N];
int cmp(struct tree a,struct tree b)
{
return a.val<b.val;
}
void dfs(int x,int y,int p)
{
int c[4][2]={1,0,0,1,0,-1,-1,0};
for(int i=0;i<=3;i++)
{
int xx=x+c[i][0],yy=y+c[i][1];
if(xx>=1&&xx<=n&&yy>=1&&yy<=m)
{
if(a[xx][yy]<=p&&bj[xx][yy]==0)
{
bj[xx][yy]=1;
ans--;
dfs(xx,yy,p);
}
}
}
}
signed main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>m>>t;
ans=n*m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)cin>>a[i][j],s[++num].x=i,s[num].y=j,s[num].val=a[i][j];
}
sort(s+1,s+1+num,cmp);
//for(int i=1;i<=n*m;i++)cout<<s[i].x<<" "<<s[i].y<<" "<<s[i].val<<endl;
int bu=1;
for(int j=1;j<=t;j++)
{
while(bu<=num&&j>=s[bu].val)
{
if(bj[s[bu].x][s[bu].y]==0)
{
int c[4][2]={1,0,0,1,0,-1,-1,0};
for(int i=0;i<=3;i++)
{
int xx=s[bu].x+c[i][0],yy=s[bu].y+c[i][1];
if(xx>=1&&xx<=n&&yy>=1&&yy<=m)
{
if(bj[xx][yy])
{
bj[s[bu].x][s[bu].y]=1;
ans--;
dfs(s[bu].x,s[bu].y,j);
break;
}
}
else
{
bj[s[bu].x][s[bu].y]=1;
ans--;
dfs(s[bu].x,s[bu].y,j);
break;
}
}
}
bu++;
}
/*for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cout<<bj[i][j]<<" ";
}
cout<<endl;
}*/
cout<<ans<<endl;
}
}
优化完复杂度应该是O(max(Y,H*W)。