问题描述
一共有n级楼梯,每次只能爬1级活着两级,那么此n级楼梯有多少种爬法?
问题分析
对于怕楼梯问题我们不能自底向上分析,而应该自顶向下分析。
即对于一个n级楼梯,我们在最后一步跨上楼梯顶的时候,有两种可能。一种可能是走了一步到顶部,另一种可能是垮了两部到顶部。
然后利用加法原理,
n级楼梯的爬法总数 = 最后一次走了一步的走法数目 + 最后一次走了两步的走法数目。
最后一次走了一步的走法数目就等于一个(n-1)级楼梯的走法数目
最后一次走了两步的走法数目等于一个(n-2)级楼梯的走法数目
设n级楼梯有f(n)种爬法
则 f(n) = f(n-1) + f(n-2)
即一个斐波那契数列!
n级楼梯的走法数目即为斐波那契数列的第n项,那么要找到第n项只需要找到前两项即可。
1级楼梯只有一种爬法
2级有两种爬法,即一次走一级,或者一次跨两步
即:f(1) = 1,f(2) = 2
那么此斐波那契数列为:
1 2 3 5 8 13 21 34 55 89 144 233 377
即如果是一个13级楼梯那么就是一个