智力题------爬楼梯问题

本文探讨了一个经典的爬楼梯问题:一个人爬n级楼梯,每次只能爬1级或2级,求有多少种不同的爬法。通过自顶向下的分析方法,将问题转化为求解斐波那契数列的第n项,给出了解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

一共有n级楼梯,每次只能爬1级活着两级,那么此n级楼梯有多少种爬法?

问题分析

对于怕楼梯问题我们不能自底向上分析,而应该自顶向下分析。

即对于一个n级楼梯,我们在最后一步跨上楼梯顶的时候,有两种可能。一种可能是走了一步到顶部,另一种可能是垮了两部到顶部。

然后利用加法原理,

n级楼梯的爬法总数 = 最后一次走了一步的走法数目 + 最后一次走了两步的走法数目。

最后一次走了一步的走法数目就等于一个(n-1)级楼梯的走法数目

最后一次走了两步的走法数目等于一个(n-2)级楼梯的走法数目

设n级楼梯有f(n)种爬法

则 f(n) = f(n-1) + f(n-2)

即一个斐波那契数列!

n级楼梯的走法数目即为斐波那契数列的第n项,那么要找到第n项只需要找到前两项即可。

1级楼梯只有一种爬法

2级有两种爬法,即一次走一级,或者一次跨两步

即:f(1) = 1,f(2) = 2

那么此斐波那契数列为:

1 2 3 5 8 13 21 34 55 89 144 233 377 

即如果是一个13级楼梯那么就是一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值