机器学习算法——支持向量机

支持向量机(SVM,support vectors machine)的算法原理比较简单,就是寻找最大间隔讲两个类别分开,从数学上推可能复杂点。按照样本的情况一下三种:

①当训练样本线性可分时,通过硬间隔最大化——线性可分支持向量机;

②当训练样本近似线性可分时,通过软间隔最大化——线性支持向量机;

③当训练样本线性不可分时,通过核技巧和软间隔最大化——非线性支持向量机;

首先从线性可分支持向量机开始推导,要找到讲两个样本分隔开的超平面,且使两边到超平面距离最近的点到超平面距离之和最大。这个超平面表示为:

                                                 

那我们就可以通过sign(y(x))来预测一个样本时属于正类还是负类。我们将分为正类的yi设为+1,负类为-1,即yi∈{+1,-1},对于超平面上下的点有:

                                               

点到超平面的距离为:

                                                 

总可以缩放w的方式将分子的最小项(即离超平面最近的点)等于1,即令|y|≥1。这样原来的目标函数为

                                                 

就变成了新的目标函数:

                                              

因为我们主要是想求得该目标函数时对应的w和b值,随意可以对目标函数稍作变化,原来的求解问题:

                                          

变为求最小值

                                       

接下来要做的就是利用拉格朗日乘子法来求解这个问题了。一般优化问题的拉格朗日乘子法具体如下:

                                         

那原来的问题对应的拉格朗日函数为:

                                          

这里需要对目前的问题转换为其对偶问题,原问题是极小极大值问题(对于对偶问题,这个网址介绍的比较清楚,可以参见http://www.hanlongfei.com/convex/2015/11/05/duality/):

                                               

其对偶问题是极大极小值问题:

                                               

拉格朗日函数L(w, b, α)对w、b求导得到:

                                            

回代到原拉格朗日函数L(w, b, α)得到:

                                         

整理得到:

                                        

这个问题解得最优解α^{*}a^{*},代入下式计算:

                                          

进而可以得到超平面:

                                            

得到分类决策函数:

                                        

 

对于线性支持向量机,是针对不一定分类完全正确的超平面就是最好的(主要是靠近超平面的点可能标记错误等),以及样本数据点本身不可以线性可分(比如边界附近两类点相互混杂)的情况,如下图:

                                                               

我们要做的就是在约束条件中加入约束因子ξ:

                                                                

目标函数变成了

                                                                

其中C值代表严格程度,C值越大越严格,越不允许分错(趋于无穷是即为前面的线性可分支持向量机了),C值越小,缓冲带越大,越包容中间可以分错的情况。目标函数求解的过程与前面相似,不再赘述了。

核函数是针对在原始的特征空间中样本线性不可分,因此使用核函数将原始特征空间映射到新的高维空间中,从而使样本可以在核空间中可分。常常使用的核函数有:

-多项式核函数

                                      

-高斯核函数,也叫做径向基函数(RBF,Radial Basis Function )

                                     

-Sigmoid核函数

                                  

但是将点映射到多维空间会是计算量极大的增加,但是我们发现K<x, y>=<Φ(x), Φ(y)>,也就是说在高维空间的计算其实等于核函数在低维空间的计算,这样便极大的降低了计算量。

核函数所反映的低维向高维的映射关系是不确定的,例如展开后为

                                                

假如原始特征空间是2维的,则Φ(x)可以是将2维映射到4维如Φ(x)=(x_{1}^{2}x_{1}x_{2}x_{1}x_{2}x_{2}^{2}),也可以是3维如Φ(x)=(x_{1}^{2}\sqrt{2}x_{1}x_{2}x_{2}^{2})。高斯核函数是映射到无穷维特征空间的,推导如下:

                                            

其中Φ(x)的映射表达式为:

                                            

在实际应用中,往往依赖先验领域知识或者交叉验证等方法来确定有效的核函数,当没有更多先验知识时,一般使用高斯核函数。

 

                                                  

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
情感识别系统是一种可以自动判断和分类文本或语音中所表达的情感的算法。支持向量机(SVM)是一种常用的机器学习方法,在情感识别中也广泛应用。 SVM基于对数据进行特征映射,将数据从低维空间转化为高维空间,以便更好地进行分类。在情感识别中,我们可以将文本或语音数据转化为特征向量表示,然后使用SVM进行分类。通常选择常用的特征表示方法如词袋模型或者TF-IDF进行特征提取。 下面给出一个用Matlab实现情感识别系统的示例代码: ```matlab % 导入情感数据集 data = importdata('emotion_data.txt'); % 划分训练集和测试集 trainRatio = 0.8; trainSize = int32(length(data) * trainRatio); trainData = data(1:trainSize,:); testData = data(trainSize+1:end,:); % 提取特征和标签 trainFeatures = trainData(:,1:end-1); trainLabels = trainData(:,end); testFeatures = testData(:,1:end-1); testLabels = testData(:,end); % 创建SVM模型 svmModel = fitcsvm(trainFeatures, trainLabels); % 在测试集上进行预测 predictedLabels = predict(svmModel, testFeatures); % 计算准确率 accuracy = sum(predictedLabels == testLabels) / length(testLabels); disp(['准确率:' num2str(accuracy*100) '%']); ``` 以上代码中,我们首先导入情感数据集,然后将数据划分为训练集和测试集。接着我们提取特征和标签,即将文本数据转化为特征向量表示。 然后我们使用fitcsvm函数来创建SVM模型,并通过predict函数在测试集上进行预测。最后我们计算准确率来评估模型的性能。 这是一个简单的情感识别系统的实现示例,实际情感识别会有更多的特征提取方法和模型调参等工作。希望这个回答能对你有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值