算法基础

模运算:

基本理论

基本概念:  给定一个正整数p,任意一个整数n,一定存在等式 n = kp + r ;  其中k、r是整数,且 0 ≤ r < p,称呼k为n除以p的商,r为n除以p的余数。  对于正整数p和整数a,b,定义如下运算:  取模运算:a % p(或a mod p),表示a除以p的余数。  模p加法:(a + b) % p ,其结果是a+b算术和除以p的余数,也就是说,(a+b) = kp +r,则(a + b) % p = r。  模p减法:(a-b) % p ,其结果是a-b算术差除以p的余数。  模p乘法:(a * b) % p,其结果是 a * b算术乘法除以p的余数。  说明:  1. 同余式:正整数a,b对p取模,它们的余数相同,记做 a ≡ b % p或者a ≡ b (mod p)。  2. n % p得到结果的正负由被除数n决定,与p无关。例如:7%4 = 3, -7%4 = -3, 7%-4 = 3, -7%-4 = -3。  <!--[if !supportLineBreakNewLine]-->  <!--[endif]-->

基本性质

(1)若p|(a-b),则a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)  (2)(a % p)=(b % p)意味a≡b (% p)  (3)对称性:a≡b (% p)等价于b≡a (% p)  (4)传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p)

运算规则

模运算与基本四则运算有些相似,但是除法例外。其规则如下:  (a + b) % p = (a % p + b % p) % p (1)  (a - b) % p = (a % p - b % p) % p (2)  (a * b) % p = (a % p * b % p) % p (3)  ab % p = ((a % p)b) % p (4)  结合率: ((a+b) % p + c) % p = (a + (b+c) % p) % p (5)  ((a*b) % p * c)% p = (a * (b*c) % p) % p (6)  交换率: (a + b) % p = (b+a) % p (7)  (a * b) % p = (b * a) % p (8)  分配率: ((a +b)% p * c) % p = ((a * c) % p + (b * c) % p) % p (9)  重要定理:若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);(10)  若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);(11)  若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),  (a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p); (12)

  若a≡b (% p),则对于任意的c,都有ac≡ bc (%p); (13)

 

3. 最大公约数  求最大公约数最常见的方法是欧几里德算法(又称辗转相除法),其计算原理依赖于定理:gcd(a,b) = gcd(b,a mod b)  证明:a可以表示成a = kb + r,则r = a mod b  假设d是a,b的一个公约数,则有d|a, d|b,而r = a - kb,因此d|r  因此d是(b,a mod b)的公约数  假设d 是(b,a mod b)的公约数,则d | b , d |r ,但是a = kb +r  因此d也是(a,b)的公约数

  因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

 

  4.模幂运算  利用模运算的运算规则,我们可以使某些计算得到简化。例如,我们想知道3333^5555的末位是什么。很明显不可能直接把3333^5555的结果计算出来,那样太大了。但我们想要确定的是3333^5555(%10),所以问题就简化了。  根据运算规则(4)ab % p = ((a % p)b) % p ,我们知道3333^5555(%10)= 3^5555(%10)。由于3^4 = 81,所以3^4(%10)= 1。  根据运算规则(3) (a * b) % p = (a % p * b % p) % p ,由于5555 = 4 * 1388 + 3,我们得到3^5555(%10)=(3^(4*1388) * 3^3)(%10)=((3^(4*1388)(%10)* 3^3(%10))(%10)  =(1 * 7)(%10)= 7。  计算完毕。  利用这些规则我们可以有效地计算X^N(% P)。简单的算法是将result初始化为1,然后重复将result乘以X,每次乘法之后应用%运算符(这样使得result的值变小,以免溢出),执行N次相乘后,result就是我们要找的答案。  这样对于较小的N值来说,实现是合理的,但是当N的值很大时,需要计算很长时间,是不切实际的。下面的结论可以得到一种更好的算法。  如果N是偶数,那么X^N =(X*X)^[N/2];  如果N是奇数,那么X^N = X*X^(N-1) = X *(X*X)^[N/2];  其中[N]是指小于或等于N的最大整数。

        

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值