题意 描述不理解, 是让求(l+sqrt(l*(l-1)))^k%k ;向下取整。
设b=sqrt(l*(l-2))
(l+b )^k是小数直接算会有错误。所以要凑成整数。
Cn=(l+b)^k +(l - b)^k ; Cn的二项式展开可以知道 b 的奇数次方会相消掉。
(l-b)是在0和1范围内的,(l-b)^k也是在0和1之间。所以结果是向上取整的。最后减1
Cn*( (l+b) +(l-b) ) = ( (l+b )^k+ (l-b)^k)* ( (l-b)+(l+b) )
2*l*Cn = ( l+b)^(k+1) + (l-b)^(k+1) +(l+b)^k *(l-b) +(l-b)^k *(l+b)
= Cn+1 + (l+b)^(k-1) *(l^2 - b^2 ) +(l-b)^(k-1) *(l^2 -b^2 );
=Cn+1 + Cn-1 *(l^2 -b^2);
所以:Cn+1 = 2*l*Cn - Cn-1 * (l^2 - b^2);
随后化成矩阵求解。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
#define ll long long
ll k,l,mod;
struct Matrix
{
ll m[2][2];
void init(ll x,ll y,ll h,ll k)
{
m[0][0]=x;
m[0][1]=y;
m[1][0]=h;
m[1][1]=k;
}
Matrix operator *(const Matrix &B)
{
Matrix T;
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{
ll t=0;
for(int k=0;k<2;k++)
t=( t + (m[i][k]*B.m[k][j])%mod)%mod;
T.m[i][j]=t;
}
}
return T;
}
}res,p;
int main()
{
#ifndef ONLINE_JUDGE
freopen("Input.txt","r",stdin);
#endif // ONLINE_JUDGE
while(~scanf("%lld%lld",&k,&l))
{
mod=k;
res.init(2*l,-(l*l-l*(l-1)),1,0);
p.init(2*l,-(l*l-l*(l-1)),1,0);
k-=2;
while(k)
{
if(k&1) res=res*p;
p=p*p;
k>>=1;
}
printf("%lld\n",((res.m[0][0]*2*l+res.m[0][1]*2-1)%mod+mod)%mod );
}
return 0;
}