2013 ACM/ICPC Asia Regional Changsha Online

题意 描述不理解, 是让求(l+sqrt(l*(l-1)))^k%k ;向下取整。

设b=sqrt(l*(l-2))

 (l+b )^k是小数直接算会有错误。所以要凑成整数。

Cn=(l+b)^k +(l - b)^k   ;  Cn的二项式展开可以知道 b 的奇数次方会相消掉。

(l-b)是在0和1范围内的,(l-b)^k也是在0和1之间。所以结果是向上取整的。最后减1

Cn*( (l+b) +(l-b) ) = ( (l+b )^k+ (l-b)^k)* ( (l-b)+(l+b) )

2*l*Cn = ( l+b)^(k+1)  + (l-b)^(k+1) +(l+b)^k *(l-b)  +(l-b)^k *(l+b) 

             = Cn+1   +  (l+b)^(k-1)  *(l^2  - b^2 )  +(l-b)^(k-1) *(l^2 -b^2 );

            =Cn+1  + Cn-1 *(l^2  -b^2);

所以:Cn+1 = 2*l*Cn  - Cn-1 * (l^2 - b^2);

随后化成矩阵求解。


#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
#define ll long long
ll k,l,mod;
struct Matrix
{
    ll m[2][2];
    void init(ll x,ll y,ll h,ll k)
    {
        m[0][0]=x;
        m[0][1]=y;
        m[1][0]=h;
        m[1][1]=k;
    }
    Matrix operator *(const Matrix &B)
    {
        Matrix T;
        for(int i=0;i<2;i++)
        {
            for(int j=0;j<2;j++)
            {
                ll t=0;
                for(int k=0;k<2;k++)
                    t=( t + (m[i][k]*B.m[k][j])%mod)%mod;
                T.m[i][j]=t;
            }
        }
        return T;
    }
}res,p;
int main()
{
    #ifndef ONLINE_JUDGE
        freopen("Input.txt","r",stdin);
    #endif // ONLINE_JUDGE

    while(~scanf("%lld%lld",&k,&l))
    {
        mod=k;
        res.init(2*l,-(l*l-l*(l-1)),1,0);

        p.init(2*l,-(l*l-l*(l-1)),1,0);

        k-=2;
        while(k)
        {
            if(k&1) res=res*p;
            p=p*p;
            k>>=1;
        }
        printf("%lld\n",((res.m[0][0]*2*l+res.m[0][1]*2-1)%mod+mod)%mod );
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值