《python深度学习》学习笔记

本文是《Python深度学习》的读书笔记,涵盖了参数化、深度学习基础、神经网络入门、机器学习策略以及深度学习技术的讲解,包括张量、梯度下降、全连接层、卷积层、LSTM单元等,并探讨了数据预处理、防止过拟合的方法及模型评估指标。
摘要由CSDN通过智能技术生成

《python深度学习》

 

第一章:

 

参数化,先随机设置权重,通过损失函数来反向传播信息,对设置的权重进行调整。

 

第一章简要的介绍了关于深度学习、机器学习的由来与争议,从概念上对深度学习进行了简要的解释,简单的描述了深度学习的核心所在。

 

 

第二章:

简要介绍关于深度学习的基本的数学概念、

张量(输入网络的数据存储对象)、张量运算(层的组成要素)和梯度下降(可以让网络从训练样本中进行学习)0D张量是仅包含一个数字——标量,1D张量是向量,2D张量是矩阵(张量是轴的个数)

2D张量的坐标分别是样本数和特征数量

 

 

广播(broadcast),以匹配较大张量的形状。广播包含 以下两步。 (1) 向较小的张量添加轴(叫作广播轴),使其 ndim(轴的个数) 与较大的张量相同。 (2) 将较小的张量沿着新轴重复,使其形状与较大的张量相同。

 

转置的函数:transpose

创建零矩阵np.zeros((300,20))  300行20 列

转换形状:reshape((6,1))    6行1列

 

梯度是张量的倒数

 

 

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值