《python深度学习》
第一章:
参数化,先随机设置权重,通过损失函数来反向传播信息,对设置的权重进行调整。
第一章简要的介绍了关于深度学习、机器学习的由来与争议,从概念上对深度学习进行了简要的解释,简单的描述了深度学习的核心所在。
第二章:
简要介绍关于深度学习的基本的数学概念、
张量(输入网络的数据存储对象)、张量运算(层的组成要素)和梯度下降(可以让网络从训练样本中进行学习)0D张量是仅包含一个数字——标量,1D张量是向量,2D张量是矩阵(张量是轴的个数)
2D张量的坐标分别是样本数和特征数量
广播(broadcast),以匹配较大张量的形状。广播包含 以下两步。 (1) 向较小的张量添加轴(叫作广播轴),使其 ndim(轴的个数) 与较大的张量相同。 (2) 将较小的张量沿着新轴重复,使其形状与较大的张量相同。
转置的函数:transpose
创建零矩阵np.zeros((300,20)) 300行20 列
转换形状:reshape((6,1)) 6行1列
梯度是张量的倒数
<