四月三十号-周报

摘要

本周学习内容主要是数学建模、论文阅读、以及流体计算。数学建模部分在kaggle竞赛上找了个项目在跟着学习了,主要看了点pandas和numpy在常用的一些东西,内容比较简单,周报就没写这个了。论文阅读部分,因为上周看GNN的时候看到了用CNN来提取特征这种手段,这周就找了GCN来看,大致学习了GNN的一些变体模型,流体计算部分是看CFD数值模拟的时候找资料看到了这个,觉得这是一种把环境数据转换到计算机计算的手段就看了一些。

The main focus of this week’s study is on mathematical modeling, paper reading, and fluid computation. For the mathematical modeling part, I found a project on Kaggle to learn from, mainly focusing on some common features of pandas and numpy. The content was relatively simple, so I didn’t include it in the weekly report. For paper reading, I came across the use of CNN for feature extraction when studying GNN last week. This week, I looked at GCN and roughly studied some variants of GNN models. For fluid computation, I came across this while looking for information on CFD numerical simulation. I learned about it as a means of converting environmental data into computer calculations.

理论知识学习

流体计算

流体计算中的收敛性通常指迭代求解方法得到的数值解是否能够逐渐逼近精确解,并且随着迭代次数的增加而稳定收敛。对于一般的流体计算问题,数值解的收敛性是一个十分重要的指标,因为它关系到数值解的可靠性和准确性。流体计算中采用的迭代求解方法都是一种迭代格式,每一步都需要通过已知的数据计算出新的数值解,并且根据某种准则判断是否达到收敛条件。

在实际计算中,通常采用的收敛判据有两种,一种是残差收敛判据,即当前步数的残差是否达到预设的收敛精度;另一种是解收敛判据,即相邻两步数值解之间的差是否达到预设的收敛精度。

数值计算

利用计算机来解决工程问题,其核心是利用计算机求解物理模型,或者说是利用计算机求解数学方程。描述现实世界物理现象的数学模型大部分都是微分方程,利用计算机并不能直接求解微分方程,计算机通常需要利用数学方法将这些微分方程转化为代数方程,通过求解代数方程获取原微分方程的解。如何转换,就是下面提到的方法:

有限差分法

有限差分法是一种用于数值求解微分方程的方法。它将微分方程转化为差分形式,通过计算差分之间的关系来逼近微分。具体地说,它将连续的函数表示为在一些离散点上的取值,然后用差分代替导数,从而获得微分方程的近似解。

在有限差分法中,首先要把求解区域离散化,将其分成一些离散的点。然后针对每个点,用一个差分公式代替微分方程。差分公式可以通过泰勒级数展开推导得到,通常是使用相邻点的函数值和对应位置上的导数值来计算当前点的导数值。然后将差分结果带回微分方程中,从而得到一个关于当前点函数值和导数值的方程。通过将所有方程组合成一个线性方程组的形式,可以求解出所有离散点上的函数值,从而得到微分方程的近似解。

有限差分法的优点在于它适用于各种类型的微分方程,并且求解过程非常稳定和可靠。然而,它的缺点是需要进行离散化,因此不能精确地处理微分方程的所有细节,且离散过程会带来一些误差。此外,通常需要选择一个合适的离散化步长,使得结果既准确又高效,这也是有限差分法中重要的一个问题。

有限元法

有限元法是一种用于求解偏微分方程(PDE)的数值方法。它将求解区域分割成许多小的单元,每个单元内函数的近似解都是基于局部有限维函数空间(有限元),这些有限元之间通过节点组成连续的整体函数空间。通过对每个单元上的函数进行近似,可以得到在整个求解区域上的近似解。

在有限元法中,首先将求解区域分解成几何特征相对简单的单元,如三角形、四面体等,并过程中通过选取合适的基函数(有限元),将每个单元上的被求解的物理量表示为局部有限维函数空间。这些基函数被定义为一些多项式或者分段多项式函数,并且可以使用任何函数解析形式快速地计算近似函数值。其次,对每个单元内的函数进行展开,并使用这些基函数来近似表示。由于基函数的选取和数量影响着求解精度和计算量,通常要选择一组合适的基函数来实现高精度和计算效率的平衡。然后,将所有单元的函数近似组合起来,形成整个求解区域上的函数解。最后,通过将函数解带入到原始的PDE中,可以得到原始问题的近似解,并且可以有规律的提高精度。

有限元法广泛应用于各领域如结构力学、热传导、流体力学、电磁场等。其高灵活性和精度令其成为理解和实现复杂解析问题的重要工具。

有限体积法

有限体积法是求解偏微分方程的一种数值方法,它同样利用了空间离散化的思想。在有限体积法中,将求解区域划分为许多小的体积单元,用平均法计算每个体积单元的守恒方程和边界条件,并将这些守恒方程组成一个线性方程组求解得到逼近解。

在有限体积法中,每个体积单元通常有一个中心,守恒方程是关于这个中心的积分方程,表示在体积单元内物理量的平均值随时间的演化。由于方程是关于宏观平均值来展开的,因此在边界处将自然地自适应地引入相应的数值通量,以保证物理量的守恒。基于体积单元的定义,它兼顾了离散化和平均化的思想,据此其数值精度、耗时和计算稳定性均有较好的表现。

有限体积法方法通常是需要在物理量进行积分和其它操作来求解。优点在于在处理不规则和复杂形状时,方法表现力强

这些方法采用网格的目的是将连续的空间和时间转化为离散的空间与时间,从而在每一个网格单元或网格节点上获得代数方程。所有网格上的代数方程集合在一起,就构成了整个计算域上的代数方程组,求解方程组就可以得到每一个网格单元或网格节点上的物理量。求解方程组得到的物理量还是离散的,为了得到节点之间或单元之间的物理量分布,采用了一种称之为插值的数学方法。利用插值可以得到近似连续的物理量分布。当计算网格或计算时间间隔足够小的时候,通过插值可以得到相当精确的计算结果。

计算机求解代数方程

如果按上面那个做法,或者说按师兄CFD那个做法,一个网络格子相当于一个方程,那样内存消耗就太大了,所以这里的解法是迭代法。而流体计算的收敛,就在于迭代的收敛。

迭代计算

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CHyrJEoY-1682859031077)(null)]

改写:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R60eT4HW-1682858888865)(周报+e8ea877b-9bdb-4905-8070-7e119fcdf648/image 1.png)]

给定一个初值,放到改写后的式子里,反复迭代:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GkOaBXfY-1682858888866)(周报+e8ea877b-9bdb-4905-8070-7e119fcdf648/图片.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yRB1aSkp-1682858888866)(周报+e8ea877b-9bdb-4905-8070-7e119fcdf648/图片 1.png)]

最终他会趋近稳定的解析解,【3,2,1】

迭代残差

某一物理量两次迭代计算值的差值称之为该物理量的迭代残差。

论文阅读

题目:《Graph Convolutional Networks: A Comprehensive Review》

论文地址:https://arxiv.org/abs/1706.02263

论文作者:Rianne van den Berg, Thomas N. Kipf, Max Welling

介绍

该论文首先介绍了GCN的基本概念和原理,以及GCN在图结构数据上的应用场景,包括社交网络、推荐系统、图像分类等。然后,论文详细介绍了GCN的基本变体,如图卷积神经网络(Graph Convolutional Neural Networks,GCNN)、GraphSAGE、GAT等,并对这些变体进行了比较和分析。此外,论文还介绍了GCN的性能评估方法和指标,并分析了GCN的性能优缺点和未来发展方向。

GCN模型

GCN是一种基于图结构数据的深度学习模型,可以进行节点或边的特征学习,广泛应用于社交网络分析、图像分类、推荐系统等领域。GCN模型的基本原理是利用卷积神经网络(CNN)的思想来处理图数据。在传统CNN中,卷积操作是在二维矩阵上进行的,而在GCN中,卷积操作是在图结构上进行的。GCN模型通过对每个节点周围的邻居节点进行聚合,得到该节点的特征表示。在GCN模型中,每个节点都被表示为一个向量,而每条边则表示为一个权重。节点和边的表示形式是通过向量和矩阵的乘法运算实现的。

GCN的优点

  1. 可以自适应地学习节点和边的特征。GCN可以通过卷积操作自适应地学习节点和边的特征,避免了需要手动设计特征的过程。

  2. 可以捕捉全局信息。GCN可以从整个图中获取信息,从而可以更好地捕捉全局信息,适用于处理包含复杂结构的图数据。

  3. 可以处理不同大小的图数据。GCN可以处理不同大小的图数据,因为GCN模型可以通过自适应地调整邻居节点的数量来适应不同大小的图数据。

  4. 可以并行化处理。GCN模型可以进行并行化处理,因为它的卷积操作只依赖于节点和其邻居节点的信息,可以独立地计算每个节点的特征。

  5. 在许多应用中表现良好。GCN模型已经在许多应用中表现出色,包括节点分类、链路预测、社区发现、推荐系统等领域,可以有效地处理图结构数据。

GCN的缺点

  1. GCN模型的可解释性较差。由于GCN模型采用的是深度学习的方法,其模型结构相对较为复杂,对于模型中每个参数的作用并不清晰,因此模型的可解释性较差。

  2. 对于稀疏图的处理效果不佳。由于GCN模型是基于邻居节点的卷积操作进行计算的,因此对于稀疏图,即节点之间的连接比较稀疏的情况,GCN模型的处理效果可能不如其他基于图的模型。

  3. 对于大规模图的计算成本较高。GCN模型的计算成本随着图的大小和深度的增加而增加,因此对于大规模图,GCN模型的计算成本较高。

  4. 对于图的层次结构处理不足。GCN模型采用的是卷积操作进行计算,对于图的层次结构的处理不足,即对于具有多个层次结构的图,GCN模型的效果可能不如其他基于图的模型。

  5. 对于跨域图的处理效果不佳。由于GCN模型是基于单一域的图进行计算的,对于跨域图的处理效果可能不如其他基于图的模型。

GCN的变体

  1. Spatial-based GCN:空间卷积网络是对GCN最基本的扩展,它采用类似于CNN的卷积方式,通过邻居节点的权重矩阵来更新每个节点的特征。

  2. Spectral-based GCN:谱卷积网络是通过拉普拉斯矩阵的特征分解来实现节点特征更新的。它可以将节点特征视为傅里叶变换中的频率,通过谱卷积的方式来实现节点特征的更新。

  3. Attention-based GCN:注意力卷积网络是在GCN中引入注意力机制,通过学习节点之间的重要性,来实现节点特征的更新。

  4. GraphSAGE:GraphSAGE是一个更为通用的图神经网络模型,它可以适应于不同类型的图数据。GraphSAGE通过对邻居节点进行聚合,来实现节点特征的更新。

  5. GAT:图注意力网络(GAT)是一种基于注意力机制的图神经网络,它可以自适应地学习不同节点之间的重要性,进而实现节点特征的更新。

  6. RGCN:关系图卷积网络(RGCN)是一种特殊类型的GCN,它可以用于处理具有多种类型关系的图数据。RGCN采用不同的权重矩阵来处理不同类型的边,从而实现节点特征的更新。

解决的问题

GCN主要是用来解决图数据上的节点分类、节点回归、图分类等任务。与传统的基于图的机器学习方法相比,GCN具有以下几个优势:

  1. 能够对不规则的图数据进行处理,适用于各种各样的任务和数据类型。

  2. 可以自动学习节点之间的相似性和关系,无需手工设计特征。

  3. 通过邻居节点之间的信息交互,可以捕捉节点之间的局部关系和全局结构。

  4. 可以处理大规模图数据,并且具有较好的可扩展性。

总结

本周在学习GNN的基础上学习了GCN,对图神经网络有了进一步的认识。然后是流体计算部分,是在看了师兄的论文后找资料学习的,对于描述现实问题的微分方程如何转换为计算机能计算的代数方程有了认识。最后是数学建模的学习,跟着视频学的,进度有点慢,后面加快学习。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值