1.背景:
血缘关系非常重要,因为有了字段间的血缘关系,便可以知道数据的来源去处,以及字段之间的转换关系,这样对数据的质量,治理有很大的帮助。
Spark SQL 相对于 Hive 来说通常情况下效率会比较高,对于运行时间、资源的使用上面等都会有较大的收益。所以考虑将采用MapReduce引擎执行的sql进行迭代,以spark引擎执行。但同时也需要实现字段血缘的功能。hive血缘关系实现较为简单,攻略也比较多,这spark血缘关系攻略较少,这里提供一种解析思路。
2.需求:
在使用spark引擎执行sql时,将表与表,字段与字段的血缘信息解析出来,可视化展示。
3.思路:
使用QueryExecutionListener对spark进行监听,读取出sparkplan(物理计划),解析其中包含的血缘关系,将血缘关系导入neo4j,spring-boot写接口,前端请求返回表的血缘关系。
4.实现:
QueryExecutionListener:监听和用于分析spark-sql执行过程中的的一些指标
The interface of query execution listener that can be used to analyze execution metrics.
trait QueryExecutionListener {
@DeveloperApi
def onSuccess(funcName: String, qe: QueryExecution, durationNs: Long): Unit
@DeveloperApi
def onFailure(funcName: String, qe: QueryExecution, exception: Exception): Unit
}
class SparkListenerTest extends QueryExecutionListener{
override def onFailure(funcName: String, qe: QueryExecution, exception: Exception): Unit = {
}
override def onSuccess(funcName: String, qe: QueryExecution, durationNs: Long): Unit = {
val sparkPlanJson: String = qe.sparkPlan.prettyJson
}
}
了解一下整个sql在spark中的解析过程
sql —(ANTLR4) —> AST —(Spark AstBuilder) —> Unresolved LogicalPlan — (Catalog) —> Resolved LogicalPlan — (Optimizer) —> Optimized LogicalPlan — (SparkPlanner) —> PhysicalPlan(SparkPlan) —(prepareForExecution) —> ExecutionPlan(PhysicalPlan)
QueryExecution可以获取到的信息如下:
logicalPlan: 逻辑计划并不知道如何执行,比如不知道表的类型(hive还是hbase),如何获取数据(jdbc还是读取hdfs),数据分布是什么样的(bucketed还是hashDistrobuted),这时就需要将逻辑计划树转换成物理计划树,获取真实的物理属性
sparkPlan:就是刚刚提到的物理计划树,这里我们监听获取sparkplan的Json信息
这段JSON获取目标表的所有信息
table和database
第一个Project包含了目标表的信息和血缘信息(下面说),其中projectList就是表中的字段信息,第一个Project就是insert into xxx 的 xxx(目标表target)