java开发过程中唯一ID的生成方式
本文主要介绍的是在开发过程中唯一ID的生成方式,在分布式的系统中唯一ID的应用场景还是很多的。当然了唯一ID的生成方式也各式各样。文章中主要是根据hutool做的封装来进行讲解。
hutool的唯一ID生成器的工具类,主要包括下面3种:
- UUID
- ObjectId(MongoDB)
- Snowflake(Twitter)
使用方式与说明
引入依赖,当前最新版本的hutool是5.3.5
<!-- https://mvnrepository.com/artifact/cn.hutool/hutool-all -->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.3.5</version>
</dependency>
UUID生成
UUID全称通用唯一识别码(universally unique identifier),是JDK通过java.util.UUID提供了 Leach-Salz 变体的封装。在Hutool中,Hutool重写java.util.UUID的逻辑,对应类为cn.hutool.core.lang.UUID,使生成不带-的UUID字符串不再需要做字符替换,性能提升一倍左右。
//生成的UUID是带-的字符串,类似于:a5c8a5e8-df2b-4706-bea4-08d0939410e3
String uuid = IdUtil.randomUUID();
//生成的是不带-的字符串,类似于:b17f24ff026d40949c85a24f4f375d42
String simpleUUID = IdUtil.simpleUUID();
ObjectId生成
ObjectId是MongoDB数据库的一种唯一ID生成策略,是UUID version1的变种
Hutool针对此封装了cn.hutool.core.lang.ObjectId,生成方式如下:
//生成类似:5b9e306a4df4f8c54a39fb0c
String id = ObjectId.next();
//方法2:从Hutool-4.1.14开始提供
String id2 = IdUtil.objectId();
Snowflake(雪花算法)
雪花算法原理
snowflake是最初Twitter为了把存储系统从MySQL迁移到Cassandra是制作的一种全局ID生成器,因为Cassandra没有顺序ID生成机制,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器产生的id必须不同,所以twitter开发了这样一套全局唯一ID生成服务。
SnowFlake算法生成id的结果是一个64bit大小的整数,组成结构如下:
- 1.1bit,一般不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。
- 2-42bit表示的是时间戳,但是存储的不是当前的时间,而是存储时间截的差值(当前时间截 - 开始时间截) 后得到的值。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69。
- 43-52bit-工作机器id,用来记录工作机器id,可以部署在2^{10} = 1024个节点。
- 53-64位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号.
snowflake除了最高位bit标记为不可用以外,其余三组bit占位均可浮动,默认情况下41bit的时间戳可以支持该算法使用到2082年,10bit的工作机器id可以支持1023台机器,序列号支持1毫秒产生4095个自增序列id,因此snowflake每秒可以生成大约26万ID左右。
默认的生成方式还是比较复杂的,hutool对snowflake进行了封装,具体的实现方式如下:
//参数1为终端ID
//参数2为数据中心ID
Snowflake snowflake = IdUtil.createSnowflake(1, 1);
long id = snowflake.nextId();