论文学习‐进化动态多目标优化的逆高斯过程建模

文章提出了一种基于逆高斯过程的模型,用于解决进化动态多目标优化中的Pareto最优前沿跟踪问题。方法通过在目标空间生成样本点并利用IGP映射到决策空间,有效解决了传统方法的所见即所得问题,提高了动态优化性能。
摘要由CSDN通过智能技术生成

论文题目:Inverse Gaussian Process Modeling for Evolutionary Dynamic Multiobjective Optimization

进化动态多目标优化的逆高斯过程建模(Huan Zhang, Jinliang Ding , Senior Member, IEEE, Min Jiang , Senior Member, IEEE, KayChenTan , Fellow, IEEE, and Tianyou Chai)IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 10, OCTOBER 2022

刚开始学习多目标优化算法,不作商业用途,如果有不正确的地方请指正!

个人总结:

摘要

  • 对于DMPOS来说,跟踪变化的Pareto最优前沿是非常有挑战性的,而大多数的传统方法是在决策空间中估计Pareto最优值,这样得到的解并不一定令人满意。
  • 由于现有方法对目标与决策向量之间具有非线性相关性的DMOPs处理精度较低,这极大的限制了逆模型的应用。
  • 这篇文章提出了一种基于逆高斯过程(inverse Gaussian process,IGP)的DMOPs预测方法。
  • 该方法利用IGP构造一个预测器,将历史最优解从目标空间映射到决策空间,还提出了一种在目标空间生成样本点的采样机制,最后用基于IGP的预测器利用这些样本点生成有效的初始种群。
  • 实验结果表明,所提出的算法能够显著提高动态优化性能,对解决现实世界的DMOPs具有一定的实际意义。

引言

许多现实世界的多目标优化问题( MOPs )涉及多个时变目标函数和/或约束的同时优化。这类问题可称为动态MOPs ( Dynamic MOPs,DMOPs ),为了解决DMOPs,已经开发了各种方法,包括多样性增强;多样性维持;记忆;和预测。

目前存在的问题

传统方法的得到解的不一定满足决策者在目标空间中的期望性质。
问题的原因:

  • 在现实任务中,决策者的最终关注点是目标空间中解的分布,而传统方法预测决策空间中的解并将其映射到目标空间
  • 本文将上述问题称为"所见即所得" ( what-it-finds-isnot-what-it-demand,WIFNWIN )问题

本文提出的想法

提出了一种基于逆高斯过程(IGP)建模的预测方法,可以有效地解决DMOPs。建立IGP模型,将历史最优解从目标空间映射到决策空间。因此,可以在一定程度上解决目标和决策向量之间的非线性相关性问题。
算法过程如下:

  • 首先,利用IGP构造一个预测器,其中历史解被重新用来训练模型。
  • 然后,利用采样机制再目标空间中生成样本点。
  • 最后,利用训练好的IGP模型,可以将样本点映射到决策空间,形成新环境的初始种群。

本文的贡献

  • 第一,所提出的方法比传统的DMOEAs更有效的解决了WIFNWIN问题,能够更好的满足决策者的需求。
  • 其次,该方法在非线性问题上具有良好的性能,有助于解决实际应用中的复杂问题。
  • 实验结果表明,所以出的算法可以大大提高解的质量,在实际应用中具有一定的可行性。

预备知识和背景

A.问题描述

一些基本的DMPOS问题介绍类似PF PS pareto支配等,在这里就不详细赘述了。

B.逆向建模

许多基于逆向建模的进化算法已成功应用于各种静态多目标优化问题,作者还介绍了一些逆向建模的算法,在这里先跳过。
逆向建模存在的问题:
简单的线性逆模型由于其较低的计算成本而被使用。当决策向量和目标向量之间存在非线性相关性时,线性模型可能无法取得较好的效果。

C.逆高斯过程

GP介绍:

  • GP是一种流行的基于统计学习和贝叶斯定理的核方法,被越来越多的用来求解昂贵的单机和MOPs的代理模型。
  • GP模型构建了决策空间到适应度空间的函数映射关系。因此,适应度评价可以以较低的代价进行计算。
  • GP的另一个重要应用是IGP模型。与代理模型不同,逆模型将适应度空间中的采样点映射回决策空间。

IGP:这一部分真的是看不懂,先记下来再说

  • IGP可以看作是随机变量的集合,其中任意有限个随机变量具有联合多元高斯分布。
  • IGP由均值函数和协方差函数决定。
  • 给定一个包含N个样本的训练集f =(f1,f2,…,fn)和x =(x1,x2,…,xn),其中fi表示m维输入,xi表示输出,i∈1,…,N.观测值xi受噪声∈ (N(0,σn2I)∈ (N(0,σn2​I)的影响在逆模型中服从如下的回归方程:​​​​​​​​​​​​​​​​​​​​​
  • 其中的g(·)可以看作是一个隐函数,它由一些满足联合高斯分布的任意函数变量表示:​​​​​​​
  • P ( g | f )为关于训练数据f的条件概率。N ( g , Kg)表示具有均值函数g和协方差矩阵Kg的高斯分布。均值函数g设为0。使用核函数k( · , ·)估计协方差矩阵Kg,k( · , ·)计算任意两个数据点之间的协方差。这样的核函数被限制在生成一个半正定矩阵Kg。
  • 为了提高计算效率,本文采用了不含参数的线性核函数:和采用合适的噪声模型定义为:其中I是一个恒等矩阵。
  • 边际似然表示为:​​​​​​​
  • 利用上式,对新的输入f *,关于输出x *的预测可以通过贝叶斯推断进行估计,得到的均值和方差为:其中K* = [ k( f * , f1) , k( f⋅, f2) , ... , k( f⋅, fN)]和K* = K( f * , f *) .
  • 因此,将逆模型p ( x | f )记为一组正态分布​​​​​​​
  • 算法1给出了IGP回归( IGPR )的一个实际实现:

  • 该算法利用Cholesky分解,速度更快,计算更稳定。记号A \ b (算法1的第4行)表示求解Ax = b的向量x。该算法返回预测均值μ *和预测方差σ 2 *​​​​​​​

D.动态多目标进化优化

现有的多目标优化方法一般分为两类:1 )数学规划方法;2 )进化算法。

现实世界中的许多优化问题都是DMOPs。由于缺乏动态响应机制,数学规划方法无法应对动态优化的不确定性。与数学优化方法不同,进化算法使用一个种群同时探索搜索空间的多个区域,从而降低了找到局部最优解的可能性,此外,EAs不需要任何先验知识,对PF的连续性和形状不敏感。

这里作者介绍了一些动态EAs在这里我没有展示出来。

大多数算法都是在决策空间中搜索动态PS来求解DMOPs。然而,决策者的终极关切是解在目标空间中的分布。因此,由于决策空间和目标空间的解存在差异,传统方法预测的解不一定满足决策者在目标空间中的期望性质。直接在目标空间中搜索最优解将是一种很有前途的替代方案。

基于此,本文提出了一种基于IGP建模的预测方法来解决广泛的DMOPs问题。

算法部分

A.基于逆高斯过程的预测器

训练逆模型的条件:1.在连续环境中的DMPOS问题中可以利用前一环境中的解来近似估计新环境中的解。2.基于目标函数可逆的假设,可以合理地构建IGP模型。

以下是伪代码:

  • 该预测器利用t时刻的PS和IGP建模方法来估计N个初始个体PoPpred
  • 假设不同决策变量的不同维度与目标向量之间存在相关性,因此需要构建d个逆模型。
  • 对于第j个逆模型,将得到的PSt和PFt分成N个训练数据对作为训练样本。
  • 训练好的IGP模型的可用性通过指定期望的目标向量fdesired来生成期望的决策向量。fdesired是通过采样目标空间生成的。

B.提出的算法框架

IGP-DMOEA伪代码如下所示 

  • 首先随机初始化种群,再利用MOEA对MOP进行优化 
  • 当环节改变发生时,利用采样机制获取期望的样本点,并利用上面的算法2预测N个初始个体PoPpred
  • 当N < Np时,随机产生Np - N个个体以提高新种群的多样性.这些个体与Poppred共同构成新环境的初始种群
  • 当满足停止准则时,算法终止,输出一系列近似PFs和PSs

C.计算复杂度

后面都先不看了 算子看不明白!

实验设计

结论

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值