计算机视觉
ChouPiJang
这个作者很懒,什么都没留下…
展开
-
Slam编程一 旋转向量、旋转矩阵,欧拉角、变换矩阵和四元数
任意旋转可用一个旋转轴和一个旋转角度来表示。旋转向量,旋转向量的方向与旋转轴一致,长度为旋转角度。在三维坐标下定义旋转轴为向量n(0,1,0)即旋转轴为y轴,旋转角度为k=30.则旋转向量可用k*n表示。使用库eigen可用下面来表示Eigen::AngleAxisd rotationVector(30,Eigen::Vector3d(0,1,0));即绕y原创 2017-09-13 20:10:52 · 1412 阅读 · 0 评论 -
计算机视觉入门概念
当我理解这些概念的时候才明白自己在计算机视觉方面需要学习哪些东西,不需要学习哪些懂,对哪一部分知识比较看重。希望这些知识可以对入门学者有所帮助,好运原创 2017-09-06 19:29:48 · 744 阅读 · 0 评论 -
关于虚拟机下Linux的opencv获取摄像头图像问题
虚拟机下ubuntu14.04 外接摄像头在opencv和PTAM的CO的下问题原创 2017-12-14 10:34:47 · 2143 阅读 · 0 评论 -
卡尔曼滤波
参考:http://blog.csdn.net/heyijia0327/article/details/17487467转载 2017-12-18 12:44:43 · 265 阅读 · 0 评论 -
YOLO学习:YOLO v2论文理解
采用了一种多尺度的训练方法。保持分类精度的同时提高YOLO检测的召回率 改进:批量处理的标准化: 高分辨率:先进的分类模型均采用了预训练的方式(ImageNet),对于AlexNet使用了小于256*256的图片。本次将YOLO的处理的图片由原始的224*224提高到448*448。对其训练优先利用ImageNet的数据进行10次迭代来进行微调,可以调高精度AnchorBo...原创 2018-11-29 17:32:56 · 306 阅读 · 0 评论 -
YOLO学习:YOLO v1论文理解
概括:YOLO在设计中摒弃了采用先进行目标检测再进行目标识别的方法,而是利用回归通过神经网络进行一次的估计输出目标所在的bounding box(框)以及class(类别)。统一检测:()将输入图片进行划分,得到S*S个栅格()每个栅格单元可以预测B个bounding box以及各个bounding box置信度P:其中IOU为系统预测出的框与原来标出的框的重合程度:...原创 2018-11-28 14:15:38 · 232 阅读 · 0 评论