数的划分 (DP解法详解)

        这是一道很好的题目,建议大家先自己思考实在调不出来再来看这篇题解,因为如果你直接不经过自己的思考和动手调代码就来“抄题解”的话,实际上这道题就丧失了意义,你也没有什么技术上的提升。

0.题目大意

        题目传送门

        不想传送的同学可以看以下大意:

                给定你两个整数n,k(6<=n<=200,2<=k<=6),让你求出把n分成k个正整数有多少种分法。

                例如n=7,k=4,那么的话所有的分法为:1,1,5;1,2,4;1,3,3;2,2,3。

                也就是说1,1,5;1,5,1;5,1,1视为同一种解。

1.DFS剪枝“正解”

        DFS剪枝相信大家都会啦~

        (后续更新好吧QAQ)

2.可以拿来装大佬的DP解法

        首先,既然知道用DP做,那么我们就用最直接的状态定义,也就是dp(i,j)表示把i分成j个正整数有dp(i,j)种方法,最终答案就是dp(n,k)。

        下面就让我们来推导一下状态转移方程,就是这道题的难点。

        根据题意,我们知道,对于dp(i,j),在答案集合里,不可能出现非正整数,只可能出现大于0的整数,也就是说实际上题目已经为我们保证了i>=j,因为如果i<j,答案集合内就一定会出现0。

        知道了这一点,我们就可以继续我们的思路了,对于dp(i,j)来说,如果i=j或者j=1,那么答案一定为1,也就是只有一种含有j个1的分解方法。那么对于dp(i,j);i>j的情况,我们也知道一种解法里最的数一定大于等于1,我们便可以直接考虑\sum_{k=1}^j dp(i-j,k)就行了,也就是先考虑先从i里选取掉一定会存在的j个1,剩下i-j个数进行分配,然后再考虑到剩下的i-j个数可能分配到1个位上、2个位上、3个位上……一直到分配到j个位上,也就是dp(i-j,1~k),最后就是上面那个求和公式啦。

        于是状态转移方程就是dp(i,j)=\sum_{k=1}^j dp(i-j,k),边界条件就是dp(0,0)=1

        如果上面的论述你不好理解的话,我下面再用一个小奥的东西来解释一下——鸽巢原理。

        经过简化,我们可以将原问题化成以下的问题:

        把n颗蛋分到k个鸽巢里,要求每个鸽巢至少分到一颗蛋,请问一共有多少种分法。

        

         这样你就可以理解啦QAQ!

 代码实现:

#include<iostream>
#include<cstdio>
using namespace std;
const int N=210,M=15;
int dp[N][M],n,k;
int main(){
	scanf("%d%d",&n,&k);
	dp[0][0]=1;
	for(int i=1;i<=n;i++)
		for(int p=1;p<=k;p++)
			for(int j=i;j<=n;j++)
				dp[j][p]+=dp[j-i][p-1];
	printf("%d\n",dp[n][k]);
	return 0;
}

3.题解结束,谢谢你的观看!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值