【bzoj4540】序列 莫队+RMQ

9 篇文章 0 订阅
1 篇文章 0 订阅

AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=4540

【题解】

这是一道挺神的题。

首先看到n、q<=100000,且询问的是区间的答案,我们考虑莫队离线做法。

考虑一个区间[l,r-1]转移到[l,r],设[l,r]的最小值所在的位置为k,则k的贡献为(k-l+1)*a[k]

我们设l[i]表示i的左边比a[i]小的第一个元素的位置,则区间[k+1,r]中的每个元素j对答案的贡献就是(j-l[j])*a[j],这样我们可以用前缀和处理在O(1)的时间内算出[k+1,r]内的所有元素对答案的贡献。

那么就剩下一个问题了,[l,r]内的最小值怎么求?

很容易想到RMQ算法,这样也能在O(1)的时间内求出最小值,所以总的时间复杂度:O(n*√n)

写完这题有了一种代码进化的感觉。

/*************
  bzoj 4540
  by chty
  2016.11.16
*************/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define FILE "read"
#define MAXN 100010
#define up(i,j,n)   for(ll i=j;i<=n;i++)
#define down(i,j,n) for(ll i=j;i>=n;i--)
struct node{ll x,y,id;}q[MAXN];
ll n,m,block,top,a[MAXN],l[MAXN],r[MAXN],stack[MAXN],f[MAXN][100],Log[MAXN];
ll now,ans[MAXN],dl[MAXN],dr[MAXN];
namespace Init{
	char buf[1<<15],*fs,*ft;
	inline char getc() {return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;}
	inline ll read(){
		ll x=0,f=1;  char ch=getc();
		while(!isdigit(ch))  {if(ch=='-')  f=-1;  ch=getc();}
		while(isdigit(ch))  {x=x*10+ch-'0';  ch=getc();}
		return x*f;
	}
}
namespace Rmq{
	void pre(){
		up(i,1,n)  Log[i]=(ll)log2(i);
		up(i,1,n)  f[i][0]=i;
		for(ll i=1;(1<<i)<=n;i++)
			for(ll j=1;j<=n-(1<<i)+1;j++){
				if(a[f[j][i-1]]<a[f[j+(1<<(i-1))][i-1]]) f[j][i]=f[j][i-1];
				else f[j][i]=f[j+(1<<(i-1))][i-1];
			}
	}
	ll query(ll l,ll r){
		ll temp=Log[r-l+1];
		if(a[f[l][temp]]<a[f[r-(1<<temp)+1][temp]])  return f[l][temp];
		else return f[r-(1<<temp)+1][temp];
	}
}
namespace Mo_Team{
	bool cmp(node a,node b) {return (a.x/block)==(b.x/block)?a.y<b.y:(a.x/block)<(b.x/block);}
	void changer(ll l,ll r,ll v){
		ll temp=Rmq::query(l,r);
		now+=v*(temp-l+1)*a[temp];
		now+=v*(dl[r]-dl[temp]);
	}
	void changel(ll l,ll r,ll v){
		ll temp=Rmq::query(l,r);
		now+=v*(r-temp+1)*a[temp];
		now+=v*(dr[l]-dr[temp]);
	}
	void solve(){
		sort(q+1,q+m+1,cmp);  now=a[1];
		ll l(1),r(1);
		up(i,1,m){
			while(q[i].y>r)  r++,changer(l,r,1);
			while(q[i].y<r)  changer(l,r,-1),r--;
			while(q[i].x>l)  changel(l,r,-1),l++;
			while(q[i].x<l)  l--,changel(l,r,1);
			ans[q[i].id]=now;
		}
	}
}
void init(){
	n=Init::read();  m=Init::read();  block=(ll)sqrt(n*1.0);
	up(i,1,n) a[i]=Init::read();
	up(i,1,m) q[i].x=Init::read(),q[i].y=Init::read(),q[i].id=i;
	up(i,1,n){
		while(top&&a[i]<a[stack[top]])  r[stack[top--]]=i;
		l[i]=(a[stack[top]]==a[i]?l[stack[top]]:stack[top]);
		stack[++top]=i;
	}
	while(top)  r[stack[top--]]=n+1;
	up(i,1,n) dl[i]=dl[l[i]]+(ll)(i-l[i])*a[i];
	down(i,n,1)  dr[i]=dr[r[i]]+(ll)(r[i]-i)*a[i];
}
void output() {up(i,1,m)  printf("%lld\n",ans[i]);}
int main(){
	freopen(FILE".in","r",stdin);
	freopen(FILE".out","w",stdout);
	init();  
	Rmq::pre();
	Mo_Team::solve();
	output();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值