AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=4540
【题解】
这是一道挺神的题。
首先看到n、q<=100000,且询问的是区间的答案,我们考虑莫队离线做法。
考虑一个区间[l,r-1]转移到[l,r],设[l,r]的最小值所在的位置为k,则k的贡献为(k-l+1)*a[k]
我们设l[i]表示i的左边比a[i]小的第一个元素的位置,则区间[k+1,r]中的每个元素j对答案的贡献就是(j-l[j])*a[j],这样我们可以用前缀和处理在O(1)的时间内算出[k+1,r]内的所有元素对答案的贡献。
那么就剩下一个问题了,[l,r]内的最小值怎么求?
很容易想到RMQ算法,这样也能在O(1)的时间内求出最小值,所以总的时间复杂度:O(n*√n)
写完这题有了一种代码进化的感觉。
/*************
bzoj 4540
by chty
2016.11.16
*************/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define FILE "read"
#define MAXN 100010
#define up(i,j,n) for(ll i=j;i<=n;i++)
#define down(i,j,n) for(ll i=j;i>=n;i--)
struct node{ll x,y,id;}q[MAXN];
ll n,m,block,top,a[MAXN],l[MAXN],r[MAXN],stack[MAXN],f[MAXN][100],Log[MAXN];
ll now,ans[MAXN],dl[MAXN],dr[MAXN];
namespace Init{
char buf[1<<15],*fs,*ft;
inline char getc() {return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;}
inline ll read(){
ll x=0,f=1; char ch=getc();
while(!isdigit(ch)) {if(ch=='-') f=-1; ch=getc();}
while(isdigit(ch)) {x=x*10+ch-'0'; ch=getc();}
return x*f;
}
}
namespace Rmq{
void pre(){
up(i,1,n) Log[i]=(ll)log2(i);
up(i,1,n) f[i][0]=i;
for(ll i=1;(1<<i)<=n;i++)
for(ll j=1;j<=n-(1<<i)+1;j++){
if(a[f[j][i-1]]<a[f[j+(1<<(i-1))][i-1]]) f[j][i]=f[j][i-1];
else f[j][i]=f[j+(1<<(i-1))][i-1];
}
}
ll query(ll l,ll r){
ll temp=Log[r-l+1];
if(a[f[l][temp]]<a[f[r-(1<<temp)+1][temp]]) return f[l][temp];
else return f[r-(1<<temp)+1][temp];
}
}
namespace Mo_Team{
bool cmp(node a,node b) {return (a.x/block)==(b.x/block)?a.y<b.y:(a.x/block)<(b.x/block);}
void changer(ll l,ll r,ll v){
ll temp=Rmq::query(l,r);
now+=v*(temp-l+1)*a[temp];
now+=v*(dl[r]-dl[temp]);
}
void changel(ll l,ll r,ll v){
ll temp=Rmq::query(l,r);
now+=v*(r-temp+1)*a[temp];
now+=v*(dr[l]-dr[temp]);
}
void solve(){
sort(q+1,q+m+1,cmp); now=a[1];
ll l(1),r(1);
up(i,1,m){
while(q[i].y>r) r++,changer(l,r,1);
while(q[i].y<r) changer(l,r,-1),r--;
while(q[i].x>l) changel(l,r,-1),l++;
while(q[i].x<l) l--,changel(l,r,1);
ans[q[i].id]=now;
}
}
}
void init(){
n=Init::read(); m=Init::read(); block=(ll)sqrt(n*1.0);
up(i,1,n) a[i]=Init::read();
up(i,1,m) q[i].x=Init::read(),q[i].y=Init::read(),q[i].id=i;
up(i,1,n){
while(top&&a[i]<a[stack[top]]) r[stack[top--]]=i;
l[i]=(a[stack[top]]==a[i]?l[stack[top]]:stack[top]);
stack[++top]=i;
}
while(top) r[stack[top--]]=n+1;
up(i,1,n) dl[i]=dl[l[i]]+(ll)(i-l[i])*a[i];
down(i,n,1) dr[i]=dr[r[i]]+(ll)(r[i]-i)*a[i];
}
void output() {up(i,1,m) printf("%lld\n",ans[i]);}
int main(){
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
init();
Rmq::pre();
Mo_Team::solve();
output();
return 0;
}