Mean-shift超像素分割

超像素分割方法包括基于图论的Normalized cuts、基于梯度上升的watershed和SLIC算法,以及mean-shift算法。mean-shift算法因其抗噪性和边缘贴合度高,适用于自然图像处理。应用上,超像素有利于图像特征提取和降低处理复杂度。在处理mean-shift滤波后的图像时,还需进行平滑、区域合并和边界绘制等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mean-shift超像素分割

超像素概念:超像素是指具有相似纹理、颜色、亮度等特征的相邻像素构成的图像块。是通过图像分割获取的小区域,但是超像素中往往存在过分割。

现有的超像素分割方法

l  基于图论的超像素分割方法:

1.        Normalized cuts算法--该算法的特点是产生的超像素较为规则,但其边缘贴合度较差,计算速度较慢,尤其不适用于大尺寸图像分割。

l  基于梯度上升的超像素分割方法:

1.        watershed算法--分水岭算法计算速度快,但过分割现象严重,且超像素边缘贴合度和紧密度较低。

2.        SLIC(simple linear iterative clustering)算法—处理速度快,超像素大小均匀,紧密的好,但是如果为了后续的超像素聚合效果并不好。

3.        mean-shift算法--抗噪性好,边缘贴合度好,生成的超像素极不规则。

超像素的应用

1)有利于图像局部特征的提取和图像结构信息的表达;

2)利于降低处理对象规模和后续处理的计算复杂度。

Mean-shift适用于处理什么样的图像?

这个应该从mean-shift的原理来理解:对灰度图像如下图来说,可以看做是分布在(X,Y,DN(灰度))三维空间的数据点。假如我们以这些数据点中的一点为球心做一个单位体积的球,并求球中数据的概率密度最大值࿰

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值