Mean-shift超像素分割
超像素概念:超像素是指具有相似纹理、颜色、亮度等特征的相邻像素构成的图像块。是通过图像分割获取的小区域,但是超像素中往往存在过分割。
现有的超像素分割方法:
l 基于图论的超像素分割方法:
1. Normalized cuts算法--该算法的特点是产生的超像素较为规则,但其边缘贴合度较差,计算速度较慢,尤其不适用于大尺寸图像分割。
l 基于梯度上升的超像素分割方法:
1. watershed算法--分水岭算法计算速度快,但过分割现象严重,且超像素边缘贴合度和紧密度较低。
2. SLIC(simple linear iterative clustering)算法—处理速度快,超像素大小均匀,紧密的好,但是如果为了后续的超像素聚合效果并不好。
3. mean-shift算法--抗噪性好,边缘贴合度好,生成的超像素极不规则。
超像素的应用:
1)有利于图像局部特征的提取和图像结构信息的表达;
2)利于降低处理对象规模和后续处理的计算复杂度。
Mean-shift适用于处理什么样的图像?
这个应该从mean-shift的原理来理解:对灰度图像如下图来说,可以看做是分布在(X,Y,DN(灰度))三维空间的数据点。假如我们以这些数据点中的一点为球心做一个单位体积的球,并求球中数据的概率密度最大值