一个谜题涉及从环形双杆中解开一组环,最初由法国农民用来锁定箱子(Steinhaus 1999)。“baguenaudier”这个词在法语中意为“时间浪费”,这个拼图也被称为中国戒指或魔鬼的针谜。(“Bague”也意味着“戒指”,但这似乎是一个词源巧合。有趣的是,膀胱 - 番泻树在法语中也被称为“baguenaudier”。)Culin(1965)将这个难题归因于中国将军洪明(公元181-234),当他离开战争时,他把妻子当作礼物送给她。
baguenaudier的解决方案与格雷码的理论密切相关。
戒指所需 的最小移动次数 是
(1)
| |||
(2)
|
其中是上取整函数,给出1,2,5,10,21,42,85,170,341,682,...(OEIS A000975)。这些数字的生成函数是
(3)
|
它们也由递归关系给出
(4)
|
用和。
通过同时移动两个端环,环的移动次数可以减少到
(5)
|
给出1,1,4,7,16,31,64,127,256,511,......(OEIS A051049)。
将解决方案的复杂性定义为环从最后一个环到最后一个环的最小次数,解决方案的最小复杂性,正如Kauffman(1996)推测并由Przytycki和Sikora证明的那样(2000年)。