易康处理大数据量影像--先分块再合并

   在对一位学生进行软件培训时,碰巧该学生要处理某市一个区范围的高分辨率影像,而且后续还要处理其他几个区的影像,如果直接将影像全部加载进来进行分割、分类等处理,速度会比较慢,同时如果电脑配置不高更是在影像解译的过程中浪费大量时间。我想这种情况,也是大家经常遇到的。eCognition系列软件里的eCognition Server,固然可以通过设置多个网络节点,对影像进行分块处理和合并,但是除了做一些大型的科研项目和课题,可能会同时购买eCognition Developer和Server的许可,一般情况下往往手里只有Developer可以用,利用Developer来完成对影像分块的分类处理、结果统计、成果输出和专题图制作等。
      为了更加快速地进行实验,本文选取了数据量较小的一块影像,对其进行简单的分块和解译。本质过程是一样的,此处理流程和相关考虑同样适用于数据量很大的影像。实验影像如下图所示,数据大小为1207*1131,将其认为数据量很大,需要分块处理,个人认为分块时考虑几个方面: (1)影像中是否有大块的黑色背景,黑色背景在Developer中是可以不参与分割分类的,因此如果没有的话,可以对影像进行平均分块,以保证每块影像处理速度都差不多,如果有的话,黑色背景所在的影像分块面积可以大一些;(2)分块后影像尽量将研究区的地类都包括进去,这一点非常适用于将相同的规则集直接应用到所有的分块影像中,尤其是当我们去建立一条条的规则进行地类区分的时候;(3)分块边界线,尽量从同一地类内部区域经过,或者理解为分块后能够尽量避免边界线左右或者上下的图斑类别属性不一致,因为最终这几块影像的分类结果是要放在一起显示的(不一定再合并为一个影像),因此显示时尽量避免有明显的分块界线
使用技巧-大数据量高分辨率影像的分块处理    第一步,在Developer中对影像进行分块,将分块结果单独输出为影像。这里简单地将实验数据划分为左右两块,考虑到X方向是0-1206,Y方向是0-1130,因此只需要将X分为两段,这里设置的是0-600和600-1206,即有重复的像素,经过实验,如果设置为0-600和601-1206,那么分块的影像之间会出现1个像素的界线,如下图所示(导入到ArcGIS里即可看到)。
使用技巧-大数据量高分辨率影像的分块处理
     对影像的分块和输出,需要在新建工程的时候进行,如下图所示,首先将原始影像添加进来,然后点击【Subset Selection】,弹出右边的【Subset Selection】对话框;1表示影像预览界面中的红色边框,即分块的边界,2表示X方向设置当前分块影像的范围是0-600,当然如果获取右边的分块影像,X方向设置应该为600和1206,这样设置完毕分块影像的具体范围后,再选中3里面的【Use geocoding for subset】和【Store subset in own files】,前者使分块后影像继承原始影像的坐标信息,后者表示输出当前分块影像,点击OK就可以把当前的分块影像输出到一个文件夹,同时以当前分块影像新建一个Developer工程。
使用技巧-大数据量高分辨率影像的分块处理
     如下图所示,完成了影像的分块,左边和右边分别的影像分别存放于两个Developer工程里。
使用技巧-大数据量高分辨率影像的分块处理
      第二步,在其中一个工程里,建立分类体系和分类规则集。考虑到分块影像,分割的算法和参数设置一样的,分类方式一样的,分类体系是一样的,最终的结果输出格式等也是一样的,因此可以将一个工程里建立好的规则集ruleset,直接加载到另外分块影像所在的工程使用。这里以左边块状影像为例,对于大数据的影像分类而言,建议大家选用决策树分类的方式,而不是最邻近分类:(1)最邻近分类和决策树分类都需要选择样本,只不过是选择样本的方式不同,前者用【Select Samples】,后者用【Manual Editing】;(2)最邻近分类还需要去做分类特征集的优化,当分类样本数量较多,初始的分类特征集里面包含很多纹理特征时,速度会非常慢,而决策树分类的特征优选是放在训练阶段即train阶段后台完成的;(3)最邻近分类所有的类别使用相同的特征空间,特征空间如果包含若干个纹理特征,那么后面执行监督分类的速度会非常非常慢,十几甚至二十多个小时都很常见,而且分类效果也不一定满足要求,决策树分类是采用的CART算法,根据初始的特征空间能够去构建一棵二叉树,从而决定了类别提取的先后顺序、使用的特征和特征对应的阈值,从而避免了我们手动去逐个实验究竟哪个特征究竟采用哪个阈值来提取哪个类别的效果较好,而且分类精度明显好于最邻近分类。因此如下图所示,在一个工程的Process Tree里建立的规则集,包含了分割、决策树分类、输出当前分类结果影像三个简单的规则,这个规则集直接可以导入到另外一个工程里进行执行,只不过需要重新选择一下样本而已。
使用技巧-大数据量高分辨率影像的分块处理
     用这种方式,分别对两个块状影像进行了分类,分类结果如下图所示。
使用技巧-大数据量高分辨率影像的分块处理      第三步,输出分类结果无非两种格式,一种是tif影像(栅格格式),一种是shp数据(矢量格式)。输出分类结果影像,可以在Process Tree里添加结果输出的算法【export classification view】,结果自动输出到工程所在文件夹里自动生成的【results】文件夹中;输出分类结果矢量数据,可以点击菜单项【Export】下面的【Export Results】,弹出的界面如下图所示,选择要输出的类别,以及这些类别所带的属性(这里仅使用了类别名称,以方便在ArcGIS里做专题显示)。
使用技巧-大数据量高分辨率影像的分块处理      第四步,将输出的结果数据导入到ArcGIS的ArcMap软件打开,首先来看结果影像的叠加,分块边界处因为基本都属于同一个类别,因此并没有明显的分块线,这也是上面提到分块要考虑几个因素的原因。
使用技巧-大数据量高分辨率影像的分块处理
      其次来看结果矢量数据的叠加,因为矢量数据里都带着类别名称,而且都是一样的,因此可以直接设置专题图显示,而且这两个矢量数据结果可以直接来做专题图。不必考虑影像或者矢量数据合并为同一个数据,毕竟基于单独的分块影像的分类结果图或者矢量数据,就可以统计类别面积等等。
使用技巧-大数据量高分辨率影像的分块处理
分享:
 
<think>好的,用户想了解易康(eCognition)中关于图像形变的处理方法。我需要理清楚用户的问题,可能涉及图像分块、分割方法以及可能的形变校正技术。 首,根据用户提供的引用内容,引用[1]提到了图像分块的方法,比如创建瓦片(tiles),这可能在处理大图像时减少形变带来的处理压力。引用[3]详细介绍了多尺度分割的参数设置,这可能与图像对象的形状控制有关,间接影响形变处理。 接下来,我需要确定“图像形变”具体指的是什么。可能包括几何畸变、投影变形,或者在分割过程中对象形状的不规则变化。用户可能是在图像处理过程中遇到了形变问题,需要校正或优化方法。 然后,结合易康的功能,可能的处理方法包括分块处理减少计算压力,调整分割参数控制对象形状,或者使用几何校正工具。例如,多尺度分割中的形状权重参数可以调整,较高的形状权重可能减少不规则对象的产生,从而减轻形变。此外,分块处理可能避免因大数据量导致的处理错误,间接减少形变。 还需要考虑用户提到的引用[2],其中提到处理影像时速度慢的问题,分块处理可能提升效率,同时可能有助于更精细地处理局部形变。 可能的解决步骤:首使用分块技术处理大图像,然后在每个分块中应用适当的分割参数,调整形状和光谱权重,确保对象形状一致。如果有几何畸变,可能需要外部校正或使用易康的几何工具进行调整。 最后,生成相关问题时要覆盖分块、参数调整、几何校正以及与其他软件的集成等方面,帮助用户全面了解解决方案。</think>### 易康图像形变处理方法 在易康(eCognition)中,图像形变问题可能涉及几何畸变校正、分割对象形状控制或数据处理优化。以下是关键解决思路: 1. **分块处理减少形变影响** 对于大范围影像,直接处理可能导致局部形变放大或计算误差。通过分块(如瓦片分割)可降低单次处理的数据量,提升精度。 - **方法**:使用`创建瓦片(tiles)`功能,将图像切割为小块,分批次处理后再整合结果[^1]。 - **优势**:避免内存过载导致的处理失真,尤其适用于高分辨率影像。 2. **调整分割参数控制对象形状** 多尺度分割的**形状权重**参数直接影响对象边界规则性,可减轻分割导致的形状畸变。 - **参数设置**: - **Shape权重**:增加形状权重(如从0.1调整为0.3),强调对象几何规则性。 - **Scale Parameter**:降低该值(如从100改为50),生成更小、更均匀的对象,减少不规则形变[^3]。 - **示例配置**: ```python # 伪代码:多尺度分割参数示例 set_parameter("Scale", 50) set_parameter("Shape", 0.3) ``` 3. **几何校正预处理** 若影像存在投影或传感器导致的几何畸变,需在易康外部(如ENVI或ArcGIS)进行几何校正,再导入处理- **步骤**: 1. 使用地面控制点(GCP)进行几何配准。 2. 导出校正后影像易康进行后续分析[^2]。 4. **结合后处理优化结果** 对分割后的对象进行形态学操作(如合并细小斑块、平滑边界),可在`ArcGIS`或易康内置工具中实现。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值