leetcode 155 最小栈

本文介绍了一种特殊栈的设计方法,该栈除了支持基本的push、pop、top操作外,还能在常数时间内检索到栈中的最小元素。通过两种实现方式,一是自定义栈并维护最小值,二是利用现成的Stack类结合辅助栈,实现了getMin方法的快速响应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈。

  • push(x) -- 将元素 x 推入栈中。
  • pop() -- 删除栈顶的元素。
  • top() -- 获取栈顶元素。
  • getMin() -- 检索栈中的最小元素。

示例:

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> 返回 -3.
minStack.pop();
minStack.top();      --> 返回 0.
minStack.getMin();   --> 返回 -2.

分析

分两种,一种自己实现栈,另一种是用现成的Stack类,更关注于如何实现常数getMin 方法。

 public static class MinStack {

        private int min;
        /** 第一次push改变状态,pop完所有元素改变状态 */
        private boolean minInited = false;
        private int[] table;

        private int p = -1;

        public MinStack() {
            table = new int[10];
        }

        public void push(int x) {
            ensureCapacity();
            p++;
            table[p] = x;

            if (!minInited) {
                min = x;
                minInited = true;
            } else {
                if (x < min) {
                    min = x;
                }
            }
        }

        public void pop() {
            //弹出去的正好是最小值,此时需要重新找最小值
            if (p > 0 && table[p] == min) {
                min = table[0];
                for (int i = 0; i <= p - 1; i++) {
                    if (table[i] < min) {
                        min = table[i];
                    }
                }
            }

            p--;
            if (p < 0) {
                p = -1;
                min = 0;
                minInited = false;
                //至此,最小值需要重新初始化
            }
        }

        public int top() {
            return p < 0 ? 0 : table[p];
        }

        private void ensureCapacity() {
            if (p >= table.length - 1) {
                int[] newTable = new int[table.length * 2];
                System.arraycopy(table, 0, newTable, 0, table.length);
                this.table = newTable;
            }
        }

        /**
         * 常数时间
         *
         * @return
         */
        public int getMin() {
            return min;
        }
    }

第二种,使用现成的类

public static class MinStack {

        private Stack<Integer> stack = new Stack<>();
        private Stack<Integer> helper = new Stack<>();


        public MinStack() {

        }

        public void push(int x) {
            stack.push(x);
            helper.push(helper.size()==0?x:Math.min(x,helper.peek()));
        }

        public void pop() {
            stack.pop();
            helper.pop();
        }

        public int top() {
            return stack.peek();
        }


        /**
         * 常数时间
         *
         * @return
         */
        public int getMin() {
            return helper.peek();
        }
    }

以上两种思路占用时间及内存相近,并没有达到太好的跑分。

转载于:https://my.oschina.net/mythss/blog/3021683

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值