实验四 RSA中公开的模数N
一.实验内容
通常,构成RSA模数N的素数p和q应该被独立地产生的。但是,假设一个开发者决定通过 选择一个随机数R,并搜索其附近的两个素数作为p和q。那么,我们来证明这种方法得 到的RSA的模数N=pq能被轻易的分解。(而RSA的安全基础就是假定模数不能被轻易分解!)
任务#1
模数N是两个素数p和q的乘积,满足 ∣ p − 1 ∣ < 2 N 1 / 4 |p-1|<2N^{1/4} ∣p−1∣<2N1/4。(模数N请见附件task.txt)
任务#2(选做)
模数N是两个素数p和q的乘积,满足 ∣ p − 1 ∣ < 2 11 N 1 / 4 |p-1|<2^{11}N^{1/4} ∣p−1∣<211N1/4。(模数N请见附件task.txt)
提示:在 A − N < 2 20 A-\sqrt{N}< 2^{20} A−N<220的情况下,尝试从 N \sqrt{N} N 向上搜索A,直到成功地分解N。
二.实验内容
任务#1
模数N是两个素数p和q的乘积,满足 ∣ p − 1 ∣ < 2 N 1 / 4 |p-1|<2N^{1/4} ∣p−1∣<2N1/4。(模数N请见附件task.txt)
1.实验原理:
根据实验文档中所写,对于模数N,和素数p,q满足:
式 子 一 : ∣ p − q ∣ < 2 N 1 / 4 式子一:|p-q|<2N^{1/4} 式子一:∣p−q∣<2N1/4
我们令A是两个素数的算数平均值,即A=p+q/2。由于p和q都是奇数,所以A是一个整数。
为了分解N,首先看到在式子一的条件下 N \sqrt{N} N是非常接近A的。具体来讲有:
A − N < 1 A-\sqrt{N}<1 A−N<1
{
这里证明为什么 0 < A − N < 1 0<A-\sqrt{N}<1 0<A−N<1:
证明:
对左边: 0 < A − N 0<A-\sqrt{N} 0<A−N:
由基本不等式 a b < = a + b 2 \sqrt{ab}<=\frac{a+b}{2} ab<=2a+b可以得到 p q < p + q 2 \sqrt{pq}<\frac{p+q}{2} pq<2p+q。
因为p不等于