实验四 RSA中公开的模数N

该博客介绍了RSA加密中模数N的分解问题,当模数N由靠近的两个素数p和q乘积形成时,如何通过数学分析和编程方法轻松分解N。实验任务包括寻找满足特定条件的整数A,以此推导出p和q的值。文章详细阐述了实验原理、代码实现和实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验四 RSA中公开的模数N

一.实验内容

通常,构成RSA模数N的素数p和q应该被独立地产生的。但是,假设一个开发者决定通过 选择一个随机数R,并搜索其附近的两个素数作为p和q。那么,我们来证明这种方法得 到的RSA的模数N=pq能被轻易的分解。(而RSA的安全基础就是假定模数不能被轻易分解!)
任务#1
模数N是两个素数p和q的乘积,满足 ∣ p − 1 ∣ < 2 N 1 / 4 |p-1|<2N^{1/4} p1<2N1/4。(模数N请见附件task.txt)
任务#2(选做)
模数N是两个素数p和q的乘积,满足 ∣ p − 1 ∣ < 2 11 N 1 / 4 |p-1|<2^{11}N^{1/4} p1<211N1/4。(模数N请见附件task.txt)
提示:在 A − N < 2 20 A-\sqrt{N}< 2^{20} AN <220的情况下,尝试从 N \sqrt{N} N 向上搜索A,直到成功地分解N。

二.实验内容

任务#1

模数N是两个素数p和q的乘积,满足 ∣ p − 1 ∣ < 2 N 1 / 4 |p-1|<2N^{1/4} p1<2N1/4。(模数N请见附件task.txt)

1.实验原理:

根据实验文档中所写,对于模数N,和素数p,q满足:
式 子 一 : ∣ p − q ∣ < 2 N 1 / 4 式子一:|p-q|<2N^{1/4} pq<2N1/4
我们令A是两个素数的算数平均值,即A=p+q/2。由于p和q都是奇数,所以A是一个整数。
为了分解N,首先看到在式子一的条件下 N \sqrt{N} N 是非常接近A的。具体来讲有:
A − N < 1 A-\sqrt{N}<1 AN <1
在这里插入图片描述

{
这里证明为什么 0 < A − N < 1 0<A-\sqrt{N}<1 0<AN <1
证明:
对左边: 0 < A − N 0<A-\sqrt{N} 0<AN
由基本不等式 a b < = a + b 2 \sqrt{ab}<=\frac{a+b}{2} ab <=2a+b可以得到 p q < p + q 2 \sqrt{pq}<\frac{p+q}{2} pq <2p+q
因为p不等于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值