您可能听说过深度学习,感觉这是一个非常令人生畏的数据科学领域。你怎么可能让机器像人类一样学习?对某些人来说,这是一个更加可怕的概念,为什么我们希望机器展现出类似人类的行为呢?在这里,我们看一下10个例子,说明在实践中如何使用深度学习。
什么是深度学习?
机器和深度学习都是人工智能的子集,但深度学习代表了机器学习的下一个发展。在机器学习中,由人类程序员创建的算法负责解析和学习数据。他们根据他们从数据中学到的东西做出决策。深度学习通过人工神经网络进行学习,该神经网络非常类似于人类大脑,并且允许机器像人类一样分析结构中的数据。深度学习机器不需要人类程序员告诉他们如何处理数据。这是通过我们收集和消费的大量数据实现的 - 数据是深度学习模型的燃料。
在实践中使用了10种深度学习方法
- 客户体验
许多企业已经使用机器学习来增强客户体验。目前正逐渐减少人工在线服务解决方案。已经有深度学习模型被用于聊天机器人,随着深度学习的不断成熟,我们可以预期这将是一个深度学习将被用于许多企业的领域。
2. 翻译
虽然自动机器翻译并不新鲜,但深度学习有助于通过使用神经网络的堆叠网络并允许从图像进行翻译来增强文本的自动翻译。
3. 为黑白图像和视频添加颜色
曾经是一个非常耗时的过程,人类不得不手工