题目描述
FJ 有一个长度为 �L(1≤�≤10,0001≤L≤10,000)的绳子。这个绳子上有 �N(1≤�≤1001≤N≤100)个结,包括两个端点。��FJ 想将绳子对折,并使较短一边的绳子上的结与较长一边绳子上的结完全重合,如图所示:
找出FJ有多少种可行的折叠方案。
输入格式
第一行:两个整数,�N 和 �L。
第 22 至 �+1N+1 行:每一行包含一个整数表示一个结所在的位置,总有两个数为 00 和 �L。
输出格式
第一行: 一个整数表示FJ可折叠的方案数。
想发
yigeyigewangxiada zhujiandigui
#include<bits/stdc++.h>
using namespace std;
int n,l,p,r[20004],ans;
int main(){
cin>>n>>l;
for(int i=1;i<=n;i++)cin>>p,r[p*2]=1;
for(int i=1;i<2*l;i++){//枚举位置
int pd=1,s=0;//pd:是否可行,s为向两端扩张的长度
while(i>=s&&i+s<=2*l){//是否越界
if(r[i-s]!=r[i+s])pd=0;
s++;
}//枚举长度
ans+=pd;
}
cout<<ans;
return 0;
}