朴素贝叶斯-新闻分类

该博客介绍了使用朴素贝叶斯算法对20类新闻文本进行分类的实验。实验结果显示分类准确率为0.83977,详细展示了不同类别新闻的精确度、召回率和F1分数。朴素贝叶斯算法在新闻分类任务中表现出良好的性能。
摘要由CSDN通过智能技术生成
朴素贝叶斯分类器的构造基础是 基于贝叶斯定理与特征条件独立假设的分类方法,与基于线性假设的模型(线性分类器和支持向量机分类器)不同。 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。
朴素贝叶斯有着广泛的实际应用环境,特别是在文本分类的任务中,包括新闻的分类,垃圾邮件的筛选。

下面使用经典的20类新闻文本作为试验数据:


Python源码:

#coding=utf-8
#load news data
from sklearn.datasets import fetch_20newsgroups
#-------------
from sklearn.cross_validation import train_test_split
#-------------
from sklearn.feature_extraction.text import CountVectorizer
#-------------
from sklearn.naive_bayes import MultinomialNB
#-------------
fr
朴素贝叶斯分类器是机器学习中常用的分类算法之一,也可以用于文本分类。对于新闻分类任务,朴素贝叶斯分类器可以将每篇新闻看做一个文本,将每个单词或者词组看做一个特征,然后通过计算给定特征下的类别概率来进行分类。 具体来说,可以按照以下步骤进行基于朴素贝叶斯新闻分类: 1. 收集数据。从不同的新闻网站或者新闻数据库中收集新闻数据,可以根据不同的主题或者类别进行分类。 2. 预处理数据。对于每篇新闻,可以进行一些预处理操作,如去除标点符号、停用词等,同时可以进行分词操作,将每个单词或者词组看做一个特征。 3. 计算每个类别下每个特征的条件概率。对于每个类别,可以统计每个特征在该类别下出现的次数,并计算出该特征在该类别下的条件概率。 4. 计算每个类别的先验概率。对于每个类别,可以统计该类别下的新闻数,并计算出该类别的先验概率。 5. 对于一篇新的新闻,可以计算该新闻在每个类别下的后验概率,选择后验概率最大的类别作为分类结果。 6. 对模型进行评估。可以使用交叉验证等方法对模型进行评估,选择适合的模型参数和特征选择方式。 需要注意的是,朴素贝叶斯分类器在文本分类任务中的表现受到许多因素的影响,如特征选择、样本均衡、数据噪声等。因此,在实际应用中需要根据具体情况进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值