【自然语言处理】对评论进行处理的推荐系统的论文总结

本文介绍了自然语言处理在推荐系统中的应用,涉及腾讯语料库、词袋模型(BOW)及其升级版N-gram模型、TF-IDF权重计算方法和隐语义模型LSA。同时,文章还分享了阿里自然语言处理部总监对NLP技术在电商领域的应用,包括情感分析、标题分析和舆情文本分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP语料库介绍的以及连接

腾讯语料库

数据链接:
https://ai.tencent.com/ailab/nlp/embedding.html
数据简介:
腾讯AI实验室宣布,正式开源一个大规模、高质量的中文词向量数据集。

该数据包含800多万中文词汇,相比现有的公开数据集,在覆盖率、新鲜度及准确性上大幅提高。

在对话回复质量预测、医疗实体识别等自然语言处理方向的业务应用方面,腾讯内部效果提升显著。
数据特点:
总体来讲,腾讯AI实验室此次公开的中文词向量数据集包含800多万中文词汇,其中每个词对应一个200维的向量。

具体方面,腾讯自称,该数据集着重在3方面进行了提升:

覆盖率(Coverage):

该词向量数据集包含很多现有公开的词向量数据集所欠缺的短语,比如“不念僧面念佛面”、“冰火两重天”、“煮酒论英雄”、“皇帝菜”、“喀拉喀什河”等。

以“喀拉喀什河”为例,利用腾讯AI Lab词向量计算出的语义相似词如下:

墨玉河、和田河、玉龙喀什河、白玉河、喀什河、叶尔羌河、克里雅河、玛纳斯河

新鲜度(Freshness):

该数据集包含一些最近一两年出现的新词,如“恋与制作人”、“三生三世十里桃花”、“打call”、“十动然拒”、“供给侧改革”、“因吹斯汀”等。

以“因吹斯汀”为例,利用腾讯AI Lab词向量计算出的语义相似词如下:

一颗赛艇、因吹斯听、城会玩、厉害了word哥、emmmmm、扎心了老铁、神吐槽、可以说是非常爆笑了

准确性(Accuracy):

由于采用了更大规模的训练数据和更好的训练算法,所生成的词向量能够更好地表达词之间的语义关系,如下列相似词检索结果所示:

在开源前,腾讯内部经历了多次测评,认为该数据集相比于现有的公开数据集&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值