学习笔记1 | GCD(Greatest Common Divisor)最大公约数的算法

本文介绍了欧几里得算法用于求解两个整数的最大公约数(GCD)的基本原理和步骤,并通过实例展示了如何运用该算法计算GCD,最终得出GCD(270,192) = 6。" 125721140,5808241,Windows环境下安装与体验Bun:现代JavaScript运行时,"['JavaScript', 'Windows开发', 'WSL', 'Bun框架', 'Node.js']
摘要由CSDN通过智能技术生成

参考https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm

GCD(Greatest Common Divisor) of two integers A and B is the largest integer that divides both A and B.

The Euclidean Algorithm is a technique for quickly finding the GCD of two integers.

 

The Algorithm

The Euclidean Algorithm for finding GCD(A,B) is as follows:

  • If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop.  
  • If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop.  
  • Write A in quotient remainder form (A = B⋅Q + R)
  • Find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) = GCD(B,R)

 

Example:

Find the GCD of 270 and 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值