GCD(Greatest Common Divisor) of two integers A and B is the largest integer that divides both A and B.
The Euclidean Algorithm is a technique for quickly finding the GCD of two integers.
The Algorithm
The Euclidean Algorithm for finding GCD(A,B) is as follows:
- If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop.
- If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop.
- Write A in quotient remainder form (A = B⋅Q + R)
- Find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) = GCD(B,R)
Example:
Find the GCD of 270 and 1