招聘系统 新定义,大数据“人才库”成招聘宝藏

随着“人才战”愈演愈烈,精明的雇主尝试建立一张庞大的网,去获取行业内的顶级人才,随着获取人才的渠道越来越广,速度越来越快,简历也在疯狂增长,但这有如一个无法开垦的金矿,还未真正发挥作用。



好消息是,ATS如今能够深入挖掘这部分简历数据的价值了。近日,人才管理软件云服务领导者北森宣布其招聘管理软件正式上线“智能推荐”功能。当HR在招聘系统中筛选简历时,系统会分析其筛选行为,识别招聘HR的简历“偏好”,然后对招聘系统中的所有简历进行全库挖掘,并推荐展示最符合招聘HR筛选需求的简历。


诚然,基于职位需求进行的简历筛选是一个复杂的行为,通过简单字段的查询,例如:性别、专业,很难搜索出真正符合某一特定职位的简历。这会使得从百万级的简历库中找出我们需要的候选人成为一场灾难。北森招聘管理系统根据招聘者筛选简历的动态行为,通过Fisher分类推荐算法动态建立行为模型,读懂筛选行为背后所代表的复杂需求,并据此对人才库中的简历大数据进行全库挖掘,从而识别出符合招聘者筛选标准的简历,这将从多个维度上提升企业招聘的效率和效果:


1、激活并挖掘历史简历库的价值


主动接触被动求职者已成为一种新的招聘趋势,但激发被动求职者的应聘意愿并不容易,在你打出电话的那一刻,他们很可能对你的企业还一无所知。而有一类被动求职者可能拥有极高的价值——那些由于种种原因被放入“人才库”中的历史应聘者——由于他们曾经主动申请你企业的职位、对企业更为了解,其求职意愿可能更容易被唤醒。遗憾的是,现实中这种高潜应聘者的简历一旦进入“人才库”后往往是被遗忘的开始。


基于招聘者当前职位的筛选行为,对于历史简历库进行挖掘,进而“淘”出符合当前职位的简历,才能真正激活企业费心积累的“人才库”并发挥它的价值。如果说如今的招人尤比淘金,那么招聘系统中的智能推荐则能够挖出埋没在历史简历库中的金子并送到HR面前,让被遗忘的角落成为企业招聘的宝藏。


2、实现及时的跨职位简历共享


看一个例子,某公司有A和B两个事业部,都在招聘工程师这一职位,但对于工程师的能力要求有所差异,招聘渠道不尽相同,招聘周期也不一致。因为不同事业部的招聘独立操作,即使是两个事业部同在一套招聘系统中操作,他们之间也很难实现及时有效的内部“资源”共享。


北森招聘管理系统的智能推荐可以轻松实现这样的跨职位、跨部门乃至跨区域的内部简历共享。如果投递给A事业部的简历符合B事业部工程师职位招聘者的筛选行为,当其在A事业部职位下被淘汰后,这份简历会自动成为智能推荐功能挖掘的对象,立即被推荐到B事业部工程师这一职位下,从而大量节省人为操作的时间并避免由于遗忘带来的疏漏。


3、提高筛选新入简历的效率


招聘者在筛选简历时,需要“快”而“准”地筛选出符合职位要求的简历,这通常是最枯燥,但却是最重要的工作。


基于大数据挖掘的智能推荐,不仅能够对企业的历史简历进行挖掘,也能够对新入库的简历进行筛选,根据招聘者当前的筛选行为快速识别符合当前职位的简历供招聘者优先查看。这首先能够帮助我们聚集重要且关键的应聘者,其次,由于智能推荐的算法是动态的,我们能够随时复查出被淘汰的、却可能真正符合当前职位要求的简历,从而避免由于我们标准的变化、或者不恰当的筛选行为而导致的简历遗漏。


大数据技术将重塑招聘软件:


招聘管理软件不同于CRM这类纯企业内部使用的软件,它大量地与外部求职者进行互动,是一个连接企业与外部求职者的互联网,北森意识到:云计算时代的新一代招聘管理软件,必定是以大数据、移动社交化为典型特征的互联网软件。


一年半前,北森招聘系统V5版发布后,客户数迅猛增加,而平台简历数量更是呈指数级增长。这带来的挑战就是:传统软件的架构根本无法满足现有招聘系统的数据量了。于是,北森建立起了大数据团队,并将招聘管理软件全面迁移到互联网级架构上,通过Spark分布式内存计算技术,实现系统内海量数据的实时处理,确保基于大数据的挖掘、推荐功能的实时高效。


这是以用友E-HR为代表的通过安装、部署方式交付的传统软件所无法比拟的。传统软件建立在旧的数据库技术上,不具备分布式、实时计算的能力,在大数据挖掘、社交化等方面自然显得无能为力。北森招聘管理系统是基于云计算模式的产品,最初便建立了互联网级的分布式架构,从而使通过大数据挖掘等技术重新定义招聘管理软件成为现实。

 







 

转载于:https://my.oschina.net/u/1160813/blog/388419

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值