seaborn color palette 调色板颜色图

本文介绍了如何在PythonSeaborn库中使用ColorBrewer调色板,以Set1为例,展示如何为sns.lineplot数据设置颜色方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Here is a list of the Color Brewer palettes, with their names for easy reference:

sns.lineplot(data=normal_df, palette=sns.color_palette(palette='Set1', n_colors=1))

image9

### Seaborn调色板使用示例 Seaborn提供了多种内置的颜色调色板,这些颜色方案可以帮助创建更具视觉吸引力的数据可视化表[^3]。 #### 创建基本的调色板并应用到散点中 ```python import seaborn as sns import matplotlib.pyplot as plt # 设置风格和背景颜色 sns.set(style="whitegrid") # 加载鸢尾花数据集作为例子 iris = sns.load_dataset("iris") # 绘制带有自定义调色板的散点 palette_example = sns.color_palette("husl", 8) # husl 是一种均匀分布于色彩空间内的调色板 scatter_plot = sns.scatterplot(x="sepal_length", y="sepal_width", hue="species", palette=palette_example, data=iris) plt.title('Iris Sepal Dimensions with Custom Palette') plt.show() ``` 此段代码展示了如何加载`iris`数据集,并通过指定`sns.color_palette()`函数来设置一个名为`husl`类型的调色板。该调色板被应用于散点中的物种着色上[^4]。 #### 使用不同的预设调色板绘制热力 ```python import numpy as np import pandas as pd # 构建随机的相关系数矩阵用于展示 np.random.seed(0) data = np.random.randn(10, 12) corr_matrix = pd.DataFrame(data).corr() # 应用diverging调色板绘制热力 heat_map_diverging = sns.heatmap(corr_matrix, cmap='vlag', center=0, square=True, annot=True, fmt='.2f', cbar_kws={"shrink": .5}) plt.title('Correlation Matrix Heatmap using Diverging Palette') plt.show() ``` 这里选择了`'vlag'`这个双向型(diverging)调色板,它非常适合用来表示正负两端差异明显的数值范围,比如相关性分析的结果。同时设置了中心值为零(`center=0`)以便更好地突出正值与负值的区别[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值