numpy学习笔记(5),其他实用函数

本文详细介绍了numpy库中关于随机数生成(包括均匀分布和正态分布)、数组排序(轴排序和索引排序)以及聚合函数(如求和、平均值、最大值、最小值和唯一值)的使用方法。同时涵盖了where函数的应用示例。
摘要由CSDN通过智能技术生成

8. 更多函数

8.1 随机数

8.1.1 常用随机数

8.1.1.1 numpy.random.rand(d0, d1, …, dn)
  • 返回[0.0, 1.0)随机浮点数,即大于等于0.0,小于1.0。
  • d0, d1, …, dn:返回的数组形状
# 使用numpy.random.rand函数
import numpy as np
np.random.rand(3)
array([0.8385857 , 0.8107416 , 0.99370002])
np.random.rand(3, 2)
array([[0.48333664, 0.78368701],
       [0.80706205, 0.3135694 ],
       [0.5942944 , 0.36877126]])
8.1.1.2 numpy.random.randint(low, high=None, size=None, dtype=‘1’)
  • 返回[low, high)随机整数,如果high省略则返回[0, low)随机整数
  • size:返回数组的形状
  • dtype:数组元素类型,l:long
# 使用numpy.random.randint函数
np.random.randint(10, high=20, size=(3, 4))
array([[12, 18, 14, 10],
       [19, 14, 11, 11],
       [13, 14, 14, 10]])

8.1.2 正态分布随机数

8.1.2.1 标准正态分布:numpy.random.randn(d0, d1, …, dn)。
  • 返回标准正态分布对技术,参数与rand函数相同

在这里插入图片描述

np.random.randn(3, 2)
array([[-0.80338048, -0.29042362],
       [-0.76188074, -0.01707931],
       [ 0.26754266, -0.99031277]])
8.1.2.2 正态分布:numpy.random.normal(loc = 0.0, scale = 1.0, size=None)。
  • 返回正态分布随机数
  • loc:平均值
  • scale:标准差
np.random.normal(1024, 30, size=(3, 4))
array([[ 978.98804509, 1024.68441494, 1078.41620308, 1005.00643101],
       [1008.94025792, 1005.52545803, 1009.09307745, 1027.56131116],
       [1023.88789661,  988.79911263, 1012.40717316, 1074.79730252]])

8.2 排序函数

8.2.1 轴排序

sort函数,按照轴对数组进行排序,语法格式如下:

numpy.sort(a, axis=-1, kind='quicksort', order=None)
  • a:要排序的数组
  • axis:排序的轴索引,默认是-1,表示最后一个轴
  • kind:排序类型,可选则quicksort,mergesort,heapsort,默认是quicksort
  • order:排序的字段,自定义对象里可用到
a = np.random.randint(0, 10, size=(3, 4))
# 只在1轴上排序
np.sort(a, axis=1)
array([[0, 5, 8, 8],
       [3, 4, 5, 9],
       [2, 2, 4, 6]])
# 只在0轴上排序
np.sort(a, axis=0)
array([[2, 0, 5, 3],
       [5, 2, 6, 4],
       [8, 4, 9, 8]])

8.2.2 轴排序索引

argsort函数,按照轴对数组进行排序索引,语法格式如下:
numpy.argsort(a, axis=-1, kind=‘quicksort’, order=None)

b = np.random.randint(0, 10, size=(3, 4))
b
array([[9, 9, 8, 6],
       [2, 3, 4, 6],
       [1, 4, 2, 0]])
# 排序返回结果是原数组的索引组合
np.argsort(b, axis=1)
array([[3, 2, 0, 1],
       [0, 1, 2, 3],
       [3, 0, 2, 1]], dtype=int64)

8.3 聚合函数

可以对整个数组元素,或对轴元素进行计算,获取单一值。
如:sum,amin,amax,mean(平均值),average(加权平均值),var(方差),std(标准偏差)等。

聚合函数都会倒置结果数组降低维度

8.3.1 求和

可以使用numpy.sum函数,或numpy.ndarray.sum方法

8.3.1.1 numpy.sum函数,语法如下
numpy.sum(a, axis=None)
  • a:要求和的数组
  • axis:指定轴索引,如果axis没有指定,则求所有元素之和,如果指定,则求该轴上的所有元素之和。
a = np.random.randint(0, 10, size=(3, 4))
print(a)
np.sum(a, 1)
[[3 3 2 6]
 [5 1 0 4]
 [2 6 8 7]]





array([14, 10, 23])
8.3.1.2 numpy.ndarray.sum方法,语法格式如下:
numpy.ndarray.sum(axis=None)
a.sum(1)
array([14, 10, 23])
b = np.arange(0, 27)
b_3 = b.reshape(3, 3, 3)
print(b_3)
# 沿轴计算后的结果,会降低一个维度
print("结果会降低一个维度:", np.sum(b_3, 2))

[[[ 0  1  2]
  [ 3  4  5]
  [ 6  7  8]]

 [[ 9 10 11]
  [12 13 14]
  [15 16 17]]

 [[18 19 20]
  [21 22 23]
  [24 25 26]]]
结果会降低一个维度: [[ 3 12 21]
 [30 39 48]
 [57 66 75]]

8.3.2 最大值

求最大值可以使用numpy.amax函数,numpy.nanmax函数,或数组的ndarray.max方法

8.3.2.1 numpy.amax函数语法如下:
numpy.amax(a, axis=None)
a = np.random.randint(0, 10, size=(3, 4))
print(a)
np.amax(a, axis=1)
[[9 1 1 3]
 [5 1 8 2]
 [9 4 9 9]]





array([9, 8, 9])
8.3.2.2 numpy.nanmax函数,忽略NaN(Not a Number,非数),语法如下:
numpy.nanmax(a, axis=None)
b = np.array([[np.nan, 1, 2, 3], [4, 5, 6, np.nan]])
np.nanmax(b, axis=1)
array([3., 6.])
8.3.2.3 ndarray.max方法,类似于语法numpy.amax函数,语法如下:
numpy.ndarray.max(axis=None)

8.3.3 最小值

与8.3.2 最大值用法类似

8.3.4 mean,平均值函数

numpy.mean函数,numpy.nanmean函数,或者ndarray.mean方法都可以求平均值。

8.3.4.1 numpy.mean函数语法如下:
numpy.mean(a, axis=None)
import numpy as np
a = np.arange(0, 9)
b = a.reshape(3, 3)
print("b: ", b)
np.mean(b, axis=1)
b:  [[0 1 2]
 [3 4 5]
 [6 7 8]]





array([1., 4., 7.])
# 不指定轴,计算所有元素的平均值,结果是个标量
np.mean(b)
4.0

8.3.5 加权平均值

numpy.average函数,语法如下:

numpy.average(a, axis=None, weights=None)
  • a:数组
  • axis:指定轴
  • weight:权重,一维数组
a = np.arange(0, 10)
b = a.reshape(2, 5)
print("b: ", b)
c = np.average(b, axis=0, weights=[0.3, 0.7])
print("c", c)
b:  [[0 1 2 3 4]
 [5 6 7 8 9]]
c [3.5 4.5 5.5 6.5 7.5]

8.4 unique函数

去除数组中的重复元素,并按照从小到大的顺序排列,语法格式如下:

numpy.unique(a, return_index=False, axis=None)
  • a:原始数组
  • return_index:设置为True,返回原始数组中的索引数组
  • axis:指定轴。如果没有指定,多维数组会降低到一维平铺。
H = [x for x in 'Hello']
W = [y for y in 'world']
print("H: ", H, "\nW: ", W)
H:  ['H', 'e', 'l', 'l', 'o'] 
W:  ['w', 'o', 'r', 'l', 'd']
# 创建二维数组
a = np.array([H, W])
a
array([['H', 'e', 'l', 'l', 'o'],
       ['w', 'o', 'r', 'l', 'd']], dtype='<U1')
# 不指定轴,降低到一维,整体去重
u = np.unique(a)
u
array(['H', 'd', 'e', 'l', 'o', 'r', 'w'], dtype='<U1')
# 返回值的第一个是值,第二个是索引
u, idx = np.unique(a, return_index=True)
# 返回的值数组
u
array(['H', 'd', 'e', 'l', 'o', 'r', 'w'], dtype='<U1')
# 返回的索引数组
idx
array([0, 9, 1, 2, 4, 7, 5], dtype=int64)
# 指定轴
a = np.array([[1, 0, 0], [1, 0, 0], [2, 1, 4]])
print(a)
[[1 0 0]
 [1 0 0]
 [2 1 4]]
# 指定0轴,再0轴上去重
u = np.unique(a, axis=0)
u
array([[1, 0, 0],
       [2, 1, 4]])
# 指定1轴,再1轴上去重,看起来没有效果
u = np.unique(a, axis=1)
u
# 因为1轴上每一个数组去重后,元素数量产生变化
array([[0, 0, 1],
       [0, 0, 1],
       [1, 4, 2]])
# 重新修改初始数组,在一轴上去重
b = np.array([[1, 0, 0], [1, 0, 0], [1, 1, 1]])
print(b)
[[1 0 0]
 [1 0 0]
 [1 1 1]]
u = np.unique(b, axis=1)
u
array([[0, 1],
       [0, 1],
       [1, 1]])

8.5 where函数

where相当于三元运算符,语法格式如下:

numpy.where(condition[, x, y])
  • condition:条件,如果为True返回x,为False返回y
  • x和y可以是标量,或数组。
a = np.arange(5)
a
array([0, 1, 2, 3, 4])
b = np.where(a < 3, a, a + 100)
b
array([  0,   1,   2, 103, 104])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值