[C++]LeetCode: 61 Search a 2D Matrix

题目:

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

For example,

Consider the following matrix:

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

Given target = 3, return true.

思路:根据题意,矩阵每行都有序排列,并且逐行增加,所以我们可以把MN矩阵展开成一维有序数组。

num表示元素的序列号,从0开始。i, j表示矩阵中的行列坐标,从0开始。
Num = n*i + j;  => i = Num /n ; j = Num % n; n表示矩阵的列。(画图可以得到)

接下来利用二分查找,找到target.

Attention: 注意将矩阵中的序列号和矩阵行列号的转换。

 int mid = lo + (hi - lo) /2;
 int i = mid / n;
 int j = mid % n;

复杂度:O(log(N)) 

AC Code: (MY_CODE ONE_PASS)

class Solution {
public:
    bool searchMatrix(vector<vector<int> > &matrix, int target) {
        //其实类似于将mn矩阵展开成一个数组然后查找,不过需要根据第几个元素,计算行列
        //num表示元素的序列号,从0开始。i,j表示矩阵中的行列坐标,从0开始。
        //Num = n*i + j;  => i = Num /n ; j = Num % n; n表示矩阵的列。
        
        bool ret = false;
        if(matrix.size() == 0 || matrix[0].size() == 0) return ret;
        int m = matrix.size();
        int n = matrix[0].size();
        
        int lo = 0;
        int hi = (m - 1) * n + (n - 1);  // hi = m * n -1;
        
        while(lo <= hi)
        {
            int mid = lo + (hi - lo) /2;
            int i = mid / n;
            int j = mid % n;
            if(target > matrix[i][j])
            {
                lo = mid + 1;
            }
            else if(target < matrix[i][j])
            {
                hi = mid - 1;
            }
            else
            {
               ret = true;
               break;
            }
        }
        
        return ret;
    
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值