复习刷题第二天:动态规划——打家劫舍系列+买卖股票系列
一、打家劫舍系列:
主要设置限定条件不能选择连续的两个值,这里判断偷不偷第(i)家,取决于 偷(i-1) 与 偷(i-2) + (i)哪种情况划得来
198.打家劫舍
213.打家劫舍Ⅱ
这个题的思路主要是把“圆圈”邻居首尾可能连着偷的情况,分开讨论了,①不带头②不带尾
337.打家劫舍Ⅲ
这里的邻居相邻关系结合二叉树情况稍微复杂一点,这一轮还是没写出来,主要是二叉树的后序遍历递归实现不熟练没写出来。
每个节点考虑偷和不偷两种状态,从孩子节点(底)遍历到头结点(头),最后选择偷不偷头节点的利益最大值
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size()<=0)
return 0;
if(nums.size()==1)
return nums[0];
vector<int> dp(nums.size(),0);
//初始化需要定义dp[0]和dp[1]
dp[0]=nums[0];
dp[1]=max(nums[0],nums[1]);
//偷i需要判断 dp[i-1]大还是(dp[i-1]+nums[i])大
for(int i=2;i<nums.size();i++) {
dp[i] = max(dp[i-1], dp[i-2]+nums[i]);
}
return dp[nums.size()-1];
}
};
class Solution {
public:
int rob_2(vector<int>& nums,int start,int end) {
//以下三步可以简化为:
// if(start==end)
// return nums[start];
if(end-start+1==0)
return 0;
if(end-start+1==1)
return nums[start];
if(end-start+1==2)
return max(nums[start],nums[end]);
vector<int> dp(nums.size(),0);
dp[start] = nums[start];
dp[start+1] = max(nums[start],nums[start+1]);
for(int i = start+2;i<=end;i++)
dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
return dp[end];
}
//大体的思路是对的,上面那个函数写的有点复杂
int rob(vector<int>& nums) {
if(nums.size()==0)
return 0;
else if(nums.size()==1)
return nums[0];
//这一步其实可以不要
else if(nums.size()==2)
return max(nums[0],nums[1]);
//第一种情况是不要第一个元素(防止与末尾紧挨被报警)
int q1 = rob_2(nums,1,nums.size()-1);
//第二种情况是不要最后一个元素(防止与第一个元素紧挨被报警)
int q2 = rob_2(nums,0,nums.size()-2);
return max(q1,q2);
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int rob(TreeNode* root) {
vector<int> result(robTree(root));
return max(result[0],result[1]);
}
vector<int> robTree(TreeNode* cur) {
//返回也要是一个数组
if(cur==NULL)
return vector<int>{0,0};
vector<int> left = robTree(cur->left);
vector<int> right = robTree(cur->right);
// 每个节点使用两种状态记录:不被偷r0,被偷r1
int r0 = max(left[0],left[1]) + max(right[0],right[1]);
int r1 = cur->val + left[0] + right[0];
return {r0,r1};
}
};
二、买卖股票的最佳时机
这个系列写起来挺顺利的,问题不大。
121.买卖股票的最佳时机
122.买卖股票的最佳时机Ⅱ
123.买卖股票的最佳时机Ⅲ
188.买卖股票的最佳时机Ⅳ
309.买卖股票的最佳时机含冷冻期
714.买卖股票的最佳时机含手续费
class Solution {
public:
int maxProfit(vector<int>& prices) {
//对于每一支股票,都有买/保持 卖/保持 这两种状态,定义 prices.size()*2的数据矩阵
vector<vector<int>> dp(prices.size(),vector<int>(2,0));
//数据的初始化,根据dp数组的含义:dp[i][0]表示买入当前股票或者保持前面已购买的股票 的利润
// dp[i][1]表示卖出当前股票或者保持已经卖出的状态 的利润
dp[0][0]=-prices[0];
dp[0][1]=0;
for(int i=1;i<prices.size();i++) {
dp[i][0] = max(dp[i-1][0],-prices[i]); //买的时候尽可能低价买入,买没买贵,取max就知道
dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]); //卖的时候看此时卖出的钱多还是以前卖出的多,也是取max
}
return dp[prices.size()-1][1];
}
};
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>> dp(prices.size(),vector<int>(2,0));
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i=1;i<prices.size();i++) {
dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]);
dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]);
}
return dp[prices.size()-1][1];
}
};
class Solution {
public:
int maxProfit(vector<int>& prices) {
//dp的定义,进行两次交易,可以分为四次操作,dp[i][0]默认初始化为0
//dp[i][1] dp[i][3]表示第一次第二次买入/保持买入状态
//dp[i][2] dp[i][4]表示第一次第二次卖出/保持卖出状态
vector<vector<int>> dp(prices.size(),vector<int>(5,0));
dp[0][1]=-prices[0];
dp[0][3]=-prices[0];
for(int i=1;i<prices.size();i++) {
dp[i][0]=dp[i-1][0];
dp[i][1] = max(dp[i-1][1], dp[i-1][0]-prices[i]);
dp[i][2] = max(dp[i-1][2], dp[i-1][1]+prices[i]);
dp[i][3] = max(dp[i-1][3], dp[i-1][2]-prices[i]);
dp[i][4] = max(dp[i-1][4], dp[i-1][3]+prices[i]);
}
return max(dp[prices.size()-1][2],dp[prices.size()-1][4]);
}
};
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if(prices.size()<=1)
return 0;
vector<vector<int>> dp(prices.size(),vector<int>(2*k+1,0));
for(int i=0;2*i+1<2*k;i++)
dp[0][2*i+1]=-prices[0];
for(int i=1;i<prices.size();i++) {
for(int j=0;j<2*k-1;j+=2) {
dp[i][j+1] = max( dp[i-1][j+1], dp[i-1][j+2]-prices[i]);
dp[i][j+2] = max( dp[i-1][j+2], dp[i-1][j+1]+prices[i]);
}
}
return dp[prices.size()-1][2*k];
}
};
class Solution {
public:
int maxProfit(vector<int>& prices) {
//1.(从冷冻期结束、)买入/保持买入
//2.之前卖出 此时无动作 or 处于冷冻期
//3.可卖出期,
//4.冷冻期,保持上一个状态
if(prices.size()<=1)
return 0;
vector<vector<int>> dp(prices.size(),vector<int>(4,0));
dp[0][0]=-prices[0];
for(int i=1;i<prices.size();i++) {
dp[i][0] = max(dp[i-1][0], max(dp[i-1][1]-prices[i],dp[i-1][3]-prices[i]));
dp[i][1] = max(dp[i-1][1],dp[i-1][3]);
dp[i][2] = dp[i-1][0] + prices[i];
dp[i][3] = dp[i-1][2];
}
return max(dp[prices.size()-1][1],max(dp[prices.size()-1][2],dp[prices.size()-1][3]));
}
};
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
if(prices.size()<=1)
return 0;
vector<vector<int>> dp(prices.size(),vector<int>(2,0));
dp[0][0]=-prices[0];
for(int i=1;i<prices.size();i++) {
dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);
dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]-fee);
}
return dp[prices.size()-1][1];
}
};