Pie_array = np.array(df['球员贡献度']) df_new = df.drop(columns=["姓名", "位置","球队",'球员贡献度']) data=df_new.values.tolist() X = data Y = Pie_array feature_names=['排名', '年龄', '场均比赛时间', '场均投球命中数', '场均投射次数', '命中率','三分球命中次数', '三分球投射次数', '三分球命中率', '二分球命中次数', '二分球投射次数', '二分球命中率', '有效命中率', '罚球命中次数','罚球投射次数', '罚球命中率', '进攻篮板数','防守篮板数', '篮板球总数', '助攻', '抢断', '盖帽','失误', '犯规次数','得分', '比赛场数','场均上场时间','进攻正负值', '防守正负值', '正负值', '赢球正负值', '48分钟回合数','胜利次数','薪水'] names = feature_names rf = RandomForestRegressor() rf.fit(X, Y) print("特征评分排序:") print(sorted(zip(map(lambda x: round(x, 4), rf.feature_importances_), names),reverse=True))