题目描述:
给定一个二叉树 root ,返回其最大深度。
二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:3
示例 2:
输入:root = [1,null,2]
输出:2
思路:
解法1:后序遍历+递归
此树的深度和其左(右)子树的深度之间的关系。显然,此树的深度 等于 左子树的深度 与 右子树的深度中的 最大值 +1。
步骤:
1、终止条件: 当 root 为空,说明已越过叶节点,因此返回 深度 0 。
2、递推: 本质上是对树做后序遍历。
计算节点 root 的 左子树的深度 ,即调用 maxDepth(root.left)。
计算节点 root 的 右子树的深度 ,即调用 maxDepth(root.right)。
3、返回值: 返回 此树的深度 ,即 max(maxDepth(root.left), maxDepth(root.right)) + 1。
python:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
return max(self.maxDepth(root.left),self.maxDepth(root.right))+1
复杂度分析:
时间复杂度 O(N): N为树的节点数量,计算树的深度需要遍历所有节点。
空间复杂度 O(N): 最差情况下(当树退化为链表时),递归深度可达到 N。
解法2:层序遍历+队列
树的层序遍历 / 广度优先搜索往往利用 队列 实现。
每遍历一层,则计数器 +1+1+1 ,直到遍历完成,则可得到树的深度。
步骤:
1、当 root 为空,直接返回 深度 000 。
2、初始化: 队列 queue (加入根节点 root ),计数器 res = 0。
3、循环遍历: 当 queue 为空时跳出。
初始化一个空列表 tmp ,用于临时存储下一层节点。
遍历队列: 遍历 queue 中的各节点 node ,并将其左子节点和右子节点加入 tmp。
更新队列: 执行 queue = tmp ,将下一层节点赋值给 queue。
统计层数: 执行 res += 1 ,代表层数加 111。
4、返回值: 返回 res 即可。
python:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
queue,res=[root],0
while queue:
tmp=[]
for node in queue:
if node.left:
tmp.append(node.left)
if node.right:
tmp.append(node.right)
queue=tmp
res+=1
return res
复杂度分析:
时间复杂度 O(N) : N 为树的节点数量,计算树的深度需要遍历所有节点。
空间复杂度 O(N) : 最差情况下(当树平衡时),队列 queue 同时存储 N/2个节点。