1. 题目描述
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最大深度 3 。
2. 解题思路 & 代码
2.1 递归:DFS(深度优先搜索)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root:
return 0
left_height = self.maxDepth(root.left)
right_height = self.maxDepth(root.right)
return max(left_height, right_height) + 1
复杂度分析
- 时间复杂度:我们每个结点只访问一次,因此时间复杂度为
O
(
N
)
O(N)
O(N),
其中 N N N 是结点的数量。 - 空间复杂度:在最糟糕的情况下,树是完全不平衡的,例如每个结点只剩下左子结点,递归将会被调用 N N N 次(树的高度),因此保持调用栈的存储将是 O ( N ) O(N) O(N)。但在最好的情况下(树是完全平衡的),树的高度将是 l o g ( N ) log(N) log(N)。因此,在这种情况下的空间复杂度将是 O ( l o g ( N ) ) O(log(N)) O(log(N))。
2.2 迭代:DFS 深度优先
使用栈,将上述递归问题转化为迭代
使用栈,用 pop,即队尾出列
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root:
return 0
stack = []
stack.append([1, root]) # 从包含根结点且相应深度为 1 的栈开始
depth = 0
while stack: # 栈不空
current_depth, root = stack.pop()
if root:
depth = max(depth, current_depth)
stack.append([current_depth + 1, root.left])
stack.append([current_depth + 1, root.right])
return depth
复杂度分析
- 时间复杂度: O ( N ) O(N) O(N)。
- 空间复杂度: O ( N ) O(N) O(N)。
2.3 BFS
使用队列,用 pop(0),即队头出列
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root:
return 0
queue = []
queue.append(root)
depth = 0
while queue:
depth += 1
for i in range(len(queue)):
temp = queue.pop(0)
if temp.left:
queue.append(temp.left)
if temp.right:
queue.append(temp.right)
return depth