Android 计算平台简介

Android 计算平台简介

        计算正逐渐变得比以往更容易,手持设备已转变为计算平台。现在的移动设备已经和真正的PC的计算能力差一些。比如当前最好的苹果A9,双核心 CPU、六核心 GPU 和两个 SRAM,以及协处理器 M9。最多就相当于I3.

     1.1 面向新PC的全新平台

        Android的Java库涵盖了电话、视频、语音、图形、连接、UI编程等多个方面。Android SDK支持大多数的Java SE,但是并不支持AWT,SWing.Android SDK拥有自己的UI。同时有自己JVM来解释Java程序。

     1.2 Android 历史

       最开始的时候,各个厂商拥有自己的手机平台,比如说:Symbian OS,  Windows Phone, iphone OS, Moblin。这些系统没有一个成为标准。
       谷歌2005年收购了Android.---还是很有远见的,如果说苹果可以把一件事情做到极致,那么Google就是把不可能的事情变为可能。
       2007年Android的1.0版本发布了预览版本。2008年9月T-Mobile发布(Android 1.1版本),这是基于Android的第一个手机。Android的一个特点就是应用程序可以彼此交互,不同的组件可以共用。这2个版本有个问题就是Android不支持软键盘。直到Android 1.5版本才改变这种状态。
      2009年Android 1.6发布,2009年10月Android2.0发布,这个版本引入了高级搜索和文本语音功能。
      Android 3.0主要针对着平板电脑,引入了“碎片”的概念,同时还引入了Action bar和拖放。同时对OpenGL,ES2.0也做了改进。
      ---------这就引发了一个问题,2.X版本只是支持手机,3.X 版本只是支持平板电脑
      Android 4.0 开始把手机和平板电脑的功能合并在了一起。
      Android 5.0 个人认为相对与4.0来说没有特别有特色的变化。
      Android 6.0 支持4K显示,启用验证,支持蓝牙手写笔,支持MIDI做出的改变比较多。

      1.3 Dalvik VM 剖析

      由于手持设备的计算、电量比起PC差的有点远。因此优化变得尤为重要。Dalvik VM是解决这个问题的一个很好的办法。Dalvik VM将Java文件转变为.dex文件。按照.class 文件可以反编译的特性。.dex文件也可以反编译,至于如何反编译,这个暂时还没有研究过。稍微查了一下用的是dex2jar文件。

      1.4 Android软件栈

     Android的层次可以分为如下几层:应用程序-->JAVA SDK---->本地库、Dalvik VM------>Linux 内核。
      Linux内核符合设备驱动、资源访问、电源管理等。提供的驱动程序包括显示器、照相机、键盘、Wi-Fi,闪存、音频、IPC.
     本地库实际上就是一些C/C++库,包括Open GL,WebKit,Free Type,SSL,LibC, Sqlite。C库是针对BSD的Linux C库。

      1.5 使用Android开发最终的用户程序

         1.5.1 Android模拟器
         Android SDK包含一个Eclipse插件 ADT.这个工具可以用来开发、调试、测试Java程序。现在比较流行的是Android Studio,Google根据 intell J开发的Android 的开发平台。并且停止了对Eclipse ADT插件的继续开发支持。我打算借助Android Studio 学习Android,虽然可能跟课本上讲的不太一致。但这也算跟随潮流了吧。
        Android模拟器使用一种QEMU的开源“处理器模拟器",来完成。这技术还支持在一个操作系统上模拟另外一个操作系统。QEMU实在CPU级别上的进行模拟。这个模拟器有个缺点就是速度太慢了。有2款比较好的Android模拟器。BlueStacks和Genymotion. 他们的速度比较快。在Android模拟器中,基于ARM(Adwanced risc machine)架构,ARM架构是哈弗结构,与我们传统的冯诺依曼,结构不是一样的。哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。哈佛结构是一种并行体系结构,它的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个独立的存储器,每个存储器独立编址、独立访问。---前几天和同事争论Android系统能不能直接安装在PC机上,我觉得ARM结构和冯诺依曼结构根本不一致,不能安装在上面。结果我们伟大的Google,开发了一个X86结构的Android,可以安装在PC上。
         1.5.2 Android UI
          Android UI可以算作第四代UI.传统C的windows API可以看作第一代UI,MFC可以看作第二代,Java Swing可以看作第三代,Android UI、JavaFX、 MicroSoft Silverlight和Mozilla XUL可以可看第四代。
         Android UI首先在XML中声明,然后在窗口中加载到UI应用程序中和Web页面一样。
         Android 的屏幕或者窗口通常称为活动,包含用户完成一个逻辑动作单元所需的多个View.
        1.5.3 Android基础组件
         Android UI框架,都依赖一种Intent的新概念。在Android中,组件是一组具有明确生命周期的代码。虽然Intent的主要作用是调用组件,但是它同时也可以服务于窗口。Android中的一个新概念是ContentProvider,ContentProvider是对数据源的抽象,使他看起来更像REST。
        1.5.4 智能手机架构

图1.1 智能手机简化结构

       智能手机的硬件基本结构大多采用双处理器架构:主处理器和从处理器。主处理器运行开放式操作系统以及操作系统之上的各种应用,负责整个系统的控制;从处理器负责基本无线通信,主要包括DBB(Digital Baseband,数字基带芯片)和ABB(Analog Baseband,模拟基带),完成语音信号和数字语音信号调制解调、信道编码解码和无线Modem控制。主处理器也叫AP(Application Processor,应用处理器),从处理器也叫BP(Baseband Processor,基带处理器),它们之间通过串口、总线或USB等方式进行通信,不同手机芯片生产集成厂家采用的集成方式都不一样,目前市面上仍以串口通信为主。不难发现,在智能手机的基本硬件结构中,BP部分只要再加一定的外围电路,如音频芯片、LCD控制、摄像机控制器、扬声器、天线等,就是一个完整的智能手机的硬件结构。


     

RF(Radio Frequency)射频的缩写

JTAG(Joint Test Action Group;联合测试工作组)是一种国际标准测试协议(IEEE 1149.1兼容),主要用于芯片内部测试。现在多数的高级器件都支持JTAG协议,如DSPFPGA器件等。标准的JTAG接口是4线:TMS、TCK、TDI、TDO,分别为模式选择、时钟、数据输入和数据输出线。

UART(UniversalAsynchronous Receiver/Transmitter)通用异步收发传输器,是一种异步收发传输器,是电脑硬件的一部分。将资料由串行通信并行通信间作传输转换,作为并行输入成为串行输出的芯片,通常集成于其他通讯接口的连结上。

GPIO(General Purpose Input Output )(通用输入/输出)总线扩展器,利用工业标准I2C、SMBus或SPI接口简化了I/O口的扩展。当微控制器或芯片组没有足够的I/O端口,或当系统需要采用远端串行通信或控制时,GPIO产品能够提供额外的控制和监视功能。

IIC或者I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线是一种串行数据总线,只有二根信号线,一根是双向的数据线SDA,另一根是时钟线SCL。在 I2C总线上传送的一个数据字节由八位组成。总线对每次传送的字节数没有限制,但每个字节后必须跟一位应答位。(这是与SPI总线最显著的不同之处)。

IIS或I2S(Inter-IC Sound Bus)是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准。I2S有3个主要信号:1.串行时钟SCLK,也叫位时钟,即对应数字音频的每一位数据,SCLK有1个脉冲。2. 帧时钟LRCK,用于切换左右声道的数据。LRCK为“1”表示正在传输的是左声道的数据,为“0”则表示正在传输的是右声道的数据。3.串行数据SDATA,就是用二进制补码表示的音频数据。有时为了使系统间能够更好地同步,还需要另外传输一个信号MCLK,称为主时钟,也叫系统时钟(Sys Clock)。


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值