反向传播算法(BackpropagationAlgorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。
全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架)来解决一个具体的问题。
读者在学习的过程中,有任何的疑问,可以添加我们的公众号或是公众号中的交流群,和大家一起交流讨论!
1.BP算法的推导
图1一个简单的三层神经网络
图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到输出。输出值的值域为,例如的值越接近0,代表该样本是“0”类的可能性越大,反之是“1”类的可能性大。
1.1前向传播的计算
为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:
输入的样本为:
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
1.1.1第一层隐藏层的计算
图2计算第一层隐藏层
第一层隐藏层有三个神经元:、和。该层的输入为:
以神经元为例,则其输入为:
同理有:
假设我们选择函数作为该层的激活函数(图1中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为:、和。
1.1.2第二层隐藏层的计算
图3计算第二层隐藏层
第二层隐藏层有两个神经元:和。该层的输入为:
即第二层的输入是第一层的输出乘以第二层的权重,再加上第二层的偏置。因此得到和的输入分别为:
该层的输出分别为:和。
1.1.3输出层的计算
图4计算输出层
输出层只有一个神经元:。该层的输入为:
即:
因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为:。
1.2反向传播的计算
在1.1节里,我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为,其中是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重w和偏置b)的偏导数。
假设我们要对第层隐藏层的参数和求偏导数,即求和。假设代表第层神经元的输入,即,其中为前一层神经元的输出,则根据链式法则有:
因此,我们只需要计算偏导数、和。
1.2.1计算偏导数
前面说过,第k层神经元的输入为:,因此可以得到:计算偏导数
上式中,代表第k层神经元的权重矩阵的第m行,代表第k层神经元的权重矩阵的第m行中的第n列。
我们以1.1节中的简单神经网络为例,假设我们要计算第一层隐藏层的神经元关于权重矩阵的导数,则有:
1.2.2计算偏导数
因为偏置b是一个常数项,因此偏导数的计算也很简单:
依然以第一层隐藏层的神经元为例,则有:
1.2.3计算偏导数
偏导数又称为误差项(errorterm,也称为“灵敏度”),一般用表示,例如是第一层神经元的误差项,其值的大小代表了第一层神经元对于最终总误差的影响大小。
根据第一节的前向计算,我们知道第层的输入与第k层的输出之间的关系为:计算偏导数
又因为,根据链式法则,我们可以得到为:
由上式我们可以看到,第k层神经元的误差项是由第层的误差项乘以第层的权重,再乘以第k层激活函数的导数(梯度)得到的。这就是误差的反向传播。
现在我们已经计算出了偏导数、和,则和可分别表示为:
单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。
2.图解BP算法
图5图解BP算法
我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:输入的样本为(假设其真实类标为“1”):
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
假设所有的激活函数均为Logistic函数:。使用均方误差函数作为损失函数:为了方便求导,我们将损失函数简为:。
2.1前向传播
我们首先初始化神经网络的参数,计算第一层神经元:
上图中我们计算出了第一层隐藏层的第一个神经元的输入和输出,同理可以计算第二个和第三个神经元的输入和输出:
接下来是第二层隐藏层的计算,首先我们计算第二层的第一个神经元的输入和输出:
同样方法可以计算该层的第二个神经元的输入和输出:
最后计算输出层的输入和输出:
2.2误差反向传播
首先计算输出层的误差项,我们的误差函数为,由于该样本的类标为“1”,而预测值为0.997520293823002,因此误差为0.002479706176998,输出层的误差项为:
接着计算第二层隐藏层的误差项,根据误差项的计算公式有:
最后是计算第一层隐藏层的误差项:
2.3更新参数
上一小节中我们已经计算出了每一层的误差项,现在我们要利用每一层的误差项和梯度来更新每一层的参数,权重W和偏置b的更新公式如下:
通常权重W的更新会加上一个正则化项来避免过拟合,这里为了简化计算,我们省去了正则化项。上式中的是学习率,我们设其值为0.1。参数更新的计算相对简单,每一层的计算方式都相同,因此本文仅演示第一层隐藏层的参数更新:
3.小结
至此,我们已经完整介绍了BP算法的原理,并使用具体的数值做了计算。在下篇中,我们将带着读者一起亲手实现一个BP神经网络(不适用任何第三方的深度学习框架),敬请期待!有任何疑问,欢迎加入我们一起交流!
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31555081/viewspace-2217354/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/31555081/viewspace-2217354/