传统推荐算法分类总结--简单梳理

传统的推荐算法分为三大类:1、基于内容的推荐(Content Based,CB),基于用户特征属性和item的特征之间的匹配程度来做推荐,推荐效果强依赖于特征工程的好坏。 好处是用户独立性,不需要协同考虑其他用户特征,这也意味着一个缺点就是可供我们分析的内容有限。 再一个好处是没与用户互动(评分、...

2017-08-22 21:41:54

阅读数 2114

评论数 0

GBDT学习总结

一、基本概念1、GBDT(Gradient Boosting Decision Tree)又叫MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,是一种迭代的决策树算法,与Ad...

2017-08-14 20:29:19

阅读数 527

评论数 0

《这就是搜索引擎-核心技术详解》简单梳理+一些知识图谱的知识

《这就是搜索引擎-核心技术详解》,我挺喜欢这本书的,深入浅出让读者明白一个搜索引擎的大体架构和各个部分的经典技术手段。一、相关概念(1)搜索引擎的3个核心问题: 理解用户真正的需求(主要第九章用户查询意图分析,再一个是情景搜索,即此时此地此人,获取用户发生查询的时间、地点、周围环境等+之前的用户模...

2017-08-07 17:05:02

阅读数 3508

评论数 0

深度学习+推荐

一。推荐任务分三类: 评分预测类任务(近几年热度:2), 排序预测类任务(top N 推荐,近几年热度:3) 分类任务(热度:1)。 推荐系统算法方面分三类: 协同过滤(CF), 基于内容的推荐(CB) 混合推荐。 二。目前的推荐算法中用到的8类深度学习模型: MLP(理论上可以拟合各种函...

2017-08-01 21:22:14

阅读数 1624

评论数 0

网络表示学习(DeepWalk,LINE,node2vec,SDNE)

1.传统:基于图的表示(又称为基于符号的表示) 如左图 G =(V,E),用不同的符号命名不同的节点,用二维数组(邻接矩阵)的存储结构表示两节点间是否存在连边,存在为1,否则为0。   缺点:长尾分布下大部分节点间没有关系,所以邻接矩阵非常稀疏,不利于存储计算。 2. 网络表示学习(...

2017-07-24 12:49:01

阅读数 29232

评论数 1

网络表示学习相关资料

收藏夹有一点爆炸,所以在这边开一个帖子直接扔这吧,下面的资料常看,温故知新。 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工作,目前很热,许多直接研究网络表示学习的工...

2017-07-08 22:59:33

阅读数 2296

评论数 0

word2vec

没太有什么公式,从实践角度来看的,主要是skip gram 模型。 一。 1. 首先搞明白为什么要用低维实值向量表示word,而不使用one-hot来表示。 “one-hot”:将 word 转化为含有一个1,其他都是0的稀疏向量,向量的维度等于词表大小,只有对应位置上的数字为1,其他都为0...

2017-07-02 16:37:19

阅读数 3339

评论数 1

异构信息网络+推荐===总结

关于异构信息网络的基本概念,可以先看看:异构信息网络–基本概念和定义学习笔记 ** 一、元路径(Meta Path) ** - 因为异构信息网络(以后简称为HIN)中包含着更多的节点类型和边的类型,相对于同构网络来说比较复杂,所以Yizhou Sun【1】第一次提出了元路径(m...

2017-06-22 18:52:28

阅读数 4623

评论数 2

推荐系统的近期综述+经典论文及其实现

Recommender systems survey 2013 偏原理 Recommender system application developments: A survey 2015 偏应用 推荐 TU Delft 石玥(现在雅虎)14年发在CSUR的一篇综述[Shi et al., 2...

2017-04-27 08:59:16

阅读数 1525

评论数 0

《统计学习方法》学习笔记(6)-- 决策树-附代码(sklearn)

决策树,特征选择的三个准则:信息增益(ID3),信息增益比(C4.5),基尼系数(CART)。决策树的生成,决策树的剪枝。

2017-04-25 17:09:38

阅读数 621

评论数 0

《统计学习方法》学习笔记(5)-- 朴素贝叶斯法

贝叶斯法 分类

2017-04-25 11:27:08

阅读数 228

评论数 0

《统计学习方法》学习笔记(3)--感知机

补点小常识:1958年,(李航老师《统计学习方法中》说到的是1957年)计算科学家Rosenblatt提出了由两层神经元组成的神经网络–“感知器”(Perceptron)–单层神经网络。感知器是当时首个可以学习的ANN。Rosenblatt现场演示了其学习识别简单图像的过程,在当时的社会引起了轰动...

2017-04-24 10:49:52

阅读数 381

评论数 0

《统计学习方法》学习笔记(2)--模型选择、泛化能力

1.泛化能力用来表征学习模型对于未知数据的预测能力。 为了避免过拟合,且使误差最小,模型选择的常用方法有:正则化和交叉验证。正则化是结构风险最小化策略的实现=经验风险最小化+正则化项/罚项 交叉验证 简单交叉验证,将数据70%作为训练集,30%作为测试集,然后选出测试误差最小的模型 S-fo...

2017-04-24 10:36:55

阅读数 877

评论数 0

隐马尔科夫模型的应用实例:中文分词

什么问题用HMM解决现实生活中有这样一类随机现象,在已知现在情况的条件下,未来时刻的情况只与现在有关,而与遥远的过去并无直接关系。比如天气预测,如果我们知道“晴天,多云,雨天”之间的转换概率,那么如果今天是晴天,我们就可以推断出明天是各种天气的概率,接着后天的天气可以由明天的进行计算。这类问题可以...

2017-04-22 21:52:01

阅读数 1165

评论数 0

用户画像杂谈

用户画像是针对产品/服务目标群体真实特征的勾勒,是真实用户的综合原型。昨晚上看了两篇关于用户画像的文章,做总结如下 1. 如何避免形式主义的用户画像 这篇文章主要围绕着如何设计用户标签体系展开。开篇先讲解了“用户画像”和其另一个名字“受众定向”,作者认为我们平时说的“用户画像”听起来更加关注人...

2017-04-18 09:23:13

阅读数 761

评论数 0

神经网络浅讲:从神经元到深度学习

原文:神经网络浅讲:从神经元到深度学习 这篇文章介绍很好,深入浅出、很容易懂但是该有的东西都讲到了,一口气看下来会觉得很爽。因为文章很长所以下面主要是上文中的一些摘抄。1.神经网络的“三起三落” 1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神...

2017-04-16 21:45:35

阅读数 1489

评论数 0

计算图(computational graph)角度看BP(back propagation)算法

从计算图(computational graph)角度看BP(back propagation)算法,这也是目前各大深度学习框架中用到的,Tensorflow, Theano, CNTK等。参考【1】一、通用形式1. 什么是计算图结构 从下图中我们可以清楚地看到 (1)可以将计算图看作是一种用...

2017-04-15 15:18:02

阅读数 8662

评论数 2

windows下安装双版本anaconda,以及配置jupyter notebook的kernel

见:http://blog.csdn.net/qq_22073849/article/details/61927062activate py3

2017-04-13 08:42:51

阅读数 774

评论数 0

Netflix推荐系统的最新解读:算法、商业价值与创新

2009年由Netflix发起的Netflix Prize百万美金竞赛,绝对是推荐系统领域最标致性的事件,这次比赛不但吸引了众多专业人士开始投身于推荐系统领域的研究工作,也让这项技术从学术圈真正地进入到了商业界,引发了热烈的讨论并逐渐深入到了商业的核心腹地,功德无量。当然,最受益的肯定还是Netf...

2017-04-09 19:52:46

阅读数 4332

评论数 0

协同过滤杂谈

两种memory-based CF对比: ItemCF:更常用一些,一个是因为其稳定性好,两个商品相似就是相似,但是两个用户之间的相似度要考虑时间因素;再一个是商品库里的商品就那么多,计算量级比较固定;还有一个是它发掘长尾商品的能力相对来说更强。 CF优缺点: 优点: (1)与基于内容...

2017-04-09 19:36:43

阅读数 257

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭