题目描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度,计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
题目限制
输入格式
一行,若干个整数,中间由空格隔开。
输出格式
两行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入输出样例
解题思路
本题解题思路主要是 贪心+二分,还用到了Dilworth 定理的思想来取找最少不上升子序列数(对于一个偏序集,最少链划分等于最长反链长度。在本题就可以理解为是最长上升子序列的长度就是能构成的不上升序列的个数)
引理:Dilworth 定理
狄尔沃斯定理亦称偏序集分解定理,该定理断言:对于任意有限偏序集,其最大反链中元素的数目必等于最小链划分中链的数目。此定理的对偶形式亦真,它断言:对于任意有限偏序集,其最长链中元素的数目必等于其最小反链划分中反链的数目。
AC代码
#include <bits/stdc++.h>
using namespace std;
int main()
{
int a[100001]={0},n=1,c=1,cn=1;
while(scanf("%d",&a[n])!=EOF)
{
n++;
}
int f[n],s[n];
f[1]=a[1];
for(int i=2;i<=n-1;i++)
{
if(a[i]<=f[c])
{
f[++c]=a[i]; //记录不上升序列长度
}
else
{
int l=1,r=c,mid;
while(l<r)
{
mid=(l+r)/2;
if(a[i]>f[mid])
{
r=mid;
}
else
l=mid+1;
}
f[l]=a[i]; //替代f[c]中大于a[i]的最小的那个,长此以往若是后面有更长的不上升序列即会更新
}
} //循环结束后f[c]记录最长不上升子序列,c记录最长不上升子序列数
s[1]=a[1];
for(int i=2;i<=n-1;i++)
{
if(a[i]>s[cn])
{
s[++cn]=a[i]; //记录上升序列长度
}
else
{
int l=1,r=cn,mid;
while(l<r)
{
mid=(l+r)/2;
if(a[i]<=s[mid])
{
r=mid;
}
else
{
l=mid+1;
}
}
s[l]=a[i];
}
} //循环结束后s[cn]记录最长不上升子序列,cn记录最长不上升子序列数
cout<<c<<endl<<cn;
return 0;
}