题干:
给你二叉树的根节点 root 和一个整数 distance 。
如果二叉树中两个 叶 节点之间的 最短路径长度 小于或者等于 distance ,那它们就可以构成一组 好叶子节点对 。
返回树中 好叶子节点对的数量 。
示例 1:
输入:root = [1,2,3,null,4], distance = 3
输出:1
解释:树的叶节点是 3 和 4 ,它们之间的最短路径的长度是 3 。这是唯一的好叶子节点对。
示例 2:
输入:root = [1,2,3,4,5,6,7], distance = 3
输出:2
解释:好叶子节点对为 [4,5] 和 [6,7] ,最短路径长度都是 2 。但是叶子节点对 [4,6] 不满足要求,因为它们之间的最短路径长度为 4 。
示例 3:
输入:root = [7,1,4,6,null,5,3,null,null,null,null,null,2], distance = 3
输出:1
解释:唯一的好叶子节点对是 [2,5] 。
示例 4:
输入:root = [100], distance = 1
输出:0
示例 5:
输入:root = [1,1,1], distance = 2
输出:1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-good-leaf-nodes-pairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解析:
二叉树的后续遍历
1. 计算出左子树中所有的叶子节点并记录每个叶子节点的高度
2. 计算出右子树中所有的叶子节点并记录每个叶子节点的高度
3. 当前节点,对返回的每个叶子节点的高度加1,并将合格的叶子节点记录下来
4. 对当前节点的左右子树返回叶子节点高度进行相加,如果在distance内,则满足条件,结果数+1
使用两层for循环,左子树的每个叶子节点与右子树的每个叶子节点进行配对比较。
依次递归到根节点,求出结果
代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int countPairs(TreeNode* root, int distance) {
int ans=0;
BackTravel(root,distance,ans);
return ans;
}
//返回的是叶子节点个数,并且记录每个节点的高度
vector<int> BackTravel(TreeNode* node, int distance, int& ans)
{
//当前节点如果是叶子节点,则返回一个高度为0
//此处也是递归终止条件
if(node->left == nullptr && node->right==nullptr)
{
vector<int> ret;
ret.push_back(0);
return ret;
}
vector<int> res; //当前节点的满足条件的叶子节点数,值代表高度
vector<int> left; //当前节点左子树满足条件的叶子节点数
vector<int> right; //当前节点右子树满足条件的叶子节点数
//获得左子树叶子节点
if(node->left)
left= BackTravel(node->left,distance,ans);
//判断满足条件的叶子节点,存放到res
for(size_t i=0; i<left.size(); i++)
{
if(++left[i]<distance)
res.push_back(left[i]);
}
//获得右子树叶子节点
if(node->right)
right = BackTravel(node->right,distance,ans);
//判断满足条件的叶子节点,存放到res
for(size_t i=0; i<right.size(); i++)
{
if(++right[i] <= distance)
{
res.push_back(right[i]);
}
}
//左右子树的叶子节点进行全配对组合,看是否满足条件,如果满足条件,则结果+1
for(size_t i=0; i<left.size(); i++)
{
for(size_t j=0; j<right.size(); j++)
{
if(left[i]+right[j] <= distance)
{
ans++;
}
}
}
//返回当前节点满足条件的所有叶子节点的高度
return res;
}
};