ODS 是一个面向主题的、集成的、可变的,当前细节数据的集合,用于支持即时性、集成的全体信息需求。ODS 的数据存
储结构应于仍数据事务型数据库系统一致(应需求而定),因此ODS数据可以不做抽取、转换,而将数据完全镜像过来。
其主要的作用如下:
1) 在业务系统和数据仓库之间形成一个隔离层。
ODS用于存放从业务系统直接抽取出来的数据,这些数据从数据结构、数
据之间的逻辑关系上都与业务系统基本保持一 致,因此在抽取过程中极
大降低了数据转化的复杂性,而主要关注数据抽取的接口、数据量小、
抽取方式等方面的问 题。
2) 转移一部分业务系统细节查询的功能
数据仓库建立之前,大量的报表、分析是由业务系统直接支持的,在一
些比较复杂的报表生成过程中,对业务系统的运 行产生相当大的压力。
ODS的数据从粒度、组织方式等各个方面都保持了与业务系统的一致,那
么原来由业务系统产生 的报表、细节数据的查询自然能够从ODS中进
行,从而降低业务系统的查询压力。
3) 完成数据仓库中不能完成的一些功能。
一般来说,带有ODS的数据仓库体系结构中,DW层所存储的数据都是进行
汇总过的数据和运营指标,并不存储每笔交易 产生的细节数据,但是在某
些特殊的应用中,可能需要对交易细节数据进行查询,这时就需要把细节
数据查询的功能转移到ODS来完成,而且ODS的数据模型按照面向主题的方
式进行存储,可以方便地支持多维分析等查询功能。即数据仓库从宏观角
度满足企业的决策支持要求,而ODS层则从微观角度反映细节交易数据或
者低粒度的数据查询要求。在一个没有ODS层的数据仓库应用系统体系结
构中,数据仓库中存储的数据粒度是根据需要而确定的,但一般来说,最
为 细节的业务数据也是需要保留的,实际上也就相当于ODS,但与ODS所
不同的是,这时的细节数据不是“当前、不断变化的”数据,而是“历史
的,不再变化的”数据。这样的数据仓库的存储压力和性能压力都是比较
大的,因此对数据仓库的物理设计和逻辑设计提出了更高的要求。
以上从ITPUB 电子杂志第十五期杂志上摘录的。
ODS (数据操作存储)是数据仓库与业务系统之间缓冲的地带,经过这个缓冲避开了应用数据以及实时模型的升级过程中 事务完整性和事务完整性处理的总开销。而且可以按照相应的主题进行存储,即为数据仓库从宏观角度满足决策支持要 求。具体的实施应根椐业务数据的实际情况进行建模、实施。
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/13571112/viewspace-659839/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/13571112/viewspace-659839/