#include<bits/stdc++.h>
#define pa pair<int,int>
typedef long long ll;
const int N=10000000;
const int mod=1000000007;
const double eps=0.00000001;
using namespace std;
inline int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int f[500005],g[500005];
int a[500005],n;
void solve1(int l,int r,int L,int R){//定义Solve(l,r,L,R)为当前待DP的区间是[l,r],此时的最优决策区间是[L,R]
if (l>r) return;//结束条件
int mid=(l+r)>>1;//取中间点
int p=0;double mx=0.0;//初始化当前对区间LR的中间MID值的最优决策位置P,以及最低代价(就是大于最大值)MX
for (int i=L;i<=R&&i<=mid;i++)//I从左到MID及R的MIN值扫一次
if ((double)a[i]+sqrt(mid-i)>=mx) //有位置取得大于当前MX值
p=i,mx=(double)a[i]+sqrt(mid-i);//更新取得MX的位置及其代价
f[mid]=a[p]+ceil(sqrt(mid-p));//double ceil(double x);功能:返回大于或者等于指定表达式的最小整数
solve1(l,mid-1,L,p);//往左半区间递归,因为当前待DP区间的MID位置已更新,所以是MID-1,下面同理
solve1(mid+1,r,p,R);//同单调决策知MID位置的最优决策在P,则小于MID位置的最优决策位置也小于P,大于则大于
}
void solve2(int l,int r,int L,int R){
if (l>r) return;
int mid=(l+r)>>1;
int p=0;double mx=0.0;//
for (int i=R;i>=L&&i>=mid;i--)
if ((double)a[i]+sqrt(i-mid)>=mx)
p=i,mx=(double)a[i]+sqrt(i-mid);
g[mid]=a[p]+ceil(sqrt(p-mid));
solve2(l,mid-1,L,p);
solve2(mid+1,r,p,R);
}
int main(){
n=read();for (int i=1;i<=n;i++) a[i]=read();
solve1(1,n,1,n);
solve2(1,n,1,n);
for (int i=1;i<=n;i++) printf("%d\n",max(f[i],g[i])-a[i]);
return 0;
}
Description
已知一个长度为n的序列a1,a2,…,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs(i-j))
Input
第一行n,(1<=n<=500000)
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)
Output
n行,第i行表示对于i,得到的p
Sample Input
6
5
3
2
4
2
4
Sample Output
2
3
5
3
5
4
题解
f[i]=a[j]+sqrt(i-j)-ai
对于i,最优决策点为k,对于i~n,比k小的点不可能再成为最优决策点,可以采用类似整体二分的形式dp