决策单调性优化DP

该博客介绍了一种决策单调性优化的动态规划方法,针对给定长度为n的序列,寻找最小非负整数p,使序列满足特定条件。通过输入示例和输出解析,博主展示了问题的解决方案,提出了f[i]=a[j]+sqrt(i-j)-ai的优化公式,并讨论了利用整体二分策略进行动态规划的状态转移。
摘要由CSDN通过智能技术生成
#include<bits/stdc++.h>
#define pa pair<int,int>
typedef long long ll;
const int N=10000000;
const int mod=1000000007;
const double eps=0.00000001;
using namespace std;
inline int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int f[500005],g[500005];
int a[500005],n;
void solve1(int l,int r,int L,int R){//定义Solve(l,r,L,R)为当前待DP的区间是[l,r],此时的最优决策区间是[L,R]
    if (l>r) return;//结束条件
    int mid=(l+r)>>1;//取中间点
    int p=0;double mx=0.0;//初始化当前对区间LR的中间MID值的最优决策位置P,以及最低代价(就是大于最大值)MX
    for (int i=L;i<=R&&i<=mid;i++)//I从左到MID及R的MIN值扫一次
        if ((double)a[i]+sqrt(mid-i)>=mx) //有位置取得大于当前MX值
            p=i,mx=(double)a[i]+sqrt(mid-i);//更新取得MX的位置及其代价
    f[mid]=a[p]+ceil(sqrt(mid-p));//double ceil(double x);功能:返回大于或者等于指定表达式的最小整数
    solve1(l,mid-1,L,p);//往左半区间递归,因为当前待DP区间的MID位置已更新,所以是MID-1,下面同理
    solve1(mid+1,r,p,R);//同单调决策知MID位置的最优决策在P,则小于MID位置的最优决策位置也小于P,大于则大于
}
void solve2(int l,int r,int L,int R){
    if (l>r) return;
    int mid=(l+r)>>1;
    int p=0;double mx=0.0;//
    for (int i=R;i>=L&&i>=mid;i--)
        if ((double)a[i]+sqrt(i-mid)>=mx)
            p=i,mx=(double)a[i]+sqrt(i-mid);
    g[mid]=a[p]+ceil(sqrt(p-mid));
    solve2(l,mid-1,L,p);
    solve2(mid+1,r,p,R);
}
int main(){
    n=read();for (int i=1;i<=n;i++) a[i]=read();
    solve1(1,n,1,n);
    solve2(1,n,1,n);
    for (int i=1;i<=n;i++) printf("%d\n",max(f[i],g[i])-a[i]);
    return 0;
}

Description

已知一个长度为n的序列a1,a2,…,an。 
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs(i-j))

Input

第一行n,(1<=n<=500000) 
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)

Output

n行,第i行表示对于i,得到的p

Sample Input








Sample Output






4

题解 
f[i]=a[j]+sqrt(i-j)-ai 
对于i,最优决策点为k,对于i~n,比k小的点不可能再成为最优决策点,可以采用类似整体二分的形式dp 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值