六倍法:
规律:大于等于5的质数一定和6倍数相邻。
证明:令x≥1,将大于等于5的自然数表示:
•••••• 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ••••••
可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,显然,素数要出现只可能出现在6x的相邻两侧。这里要注意的一点是,在6的倍数相邻两侧并不是一定就是质数。
根据以上规律,判断质数可以6个为单元快进,即将方法(2)循环中i++步长加大为6,加快判断速度
bool isPrime_3( int num )
{
//两个较小数另外处理
if(num ==2|| num==3 )return 1 ;
//不在6的倍数两侧的一定不是质数
if(num %6!= 1&&num %6!= 5)return 0 ;
int tmp =sqrt( num);
//在6的倍数两侧的也可能不是质数
for(int i= 5;i <=tmp; i+=6 )
if(num %i== 0||num %(i+ 2)==0 )
return 0 ;
//排除所有,剩余的是质数
return 1 ;
}
ON素数打表
const int maxn = 1e4+100;
int prime[maxn+3];
void init(){
memset(prime, 0, sizeof(prime));
for(int i=2; i<=maxn; ++i){
if(!prime[i]) prime[++prime[0]] = i;
for(int j=1; j<=prime[0]
&&prime[j]*i<=maxn; ++j){
prime[prime[j]*i] = 1;
if(i%prime[j] == 0) break;
}
}
}
Miller-Rabbin测试(随机算法):
现在我们只需要多次寻找不超过n-1基并检验是否有a^(n-1)≡1(mod n),如果一直有, 那么这个数就是一个素数,否则可以立即判定这个数是个合数。
检验时使用快速幂优化,可以使复杂度降至O(slogn),这里s为选取基的次数。可以证明,出错的概率不大于1/(2^s),因此s取到几十就差不多了。注意对2要进行特判。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL gcd(LL x, LL y){
if (!y) return x;
return (y, x%y);
}
LL pow(LL a, LL x, LL mod){
LL ans = 1;
while(x){
if (x & 1) (ans *= a) %= mod;
(a *= a) %= mod;
x >>= 1;
}
return ans;
}
bool MRT(LL x){
if (x == 2) return true;
for (LL i = 1; i <= 30; ++i){
LL now = rand()%(x-2) + 2;
if (pow(now, x-1, x) != 1)
return false;
}
return true;
}
int main(){
int n;LL x;
scanf("%d", &n);
while(n--){
scanf("%I64d", &x);
if (MRT(x)) printf("YES\n");
else printf("NO\n");
}
return 0;
}