素数判断(六倍&随机)

六倍法:
规律:大于等于5的质数一定和6倍数相邻。
证明:令x≥1,将大于等于5的自然数表示:
•••••• 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ••••••
可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,显然,素数要出现只可能出现在6x的相邻两侧。这里要注意的一点是,在6的倍数相邻两侧并不是一定就是质数。
根据以上规律,判断质数可以6个为单元快进,即将方法(2)循环中i++步长加大为6,加快判断速度
bool isPrime_3( int num )  
{  
     //两个较小数另外处理  
     if(num ==2|| num==3 )return 1 ;  
     //不在6的倍数两侧的一定不是质数  
     if(num %6!= 1&&num %6!= 5)return 0 ;  
     int tmp =sqrt( num);  
     //在6的倍数两侧的也可能不是质数  
     for(int i= 5;i <=tmp; i+=6 )  
         if(num %i== 0||num %(i+ 2)==0 )  
             return 0 ;  
     //排除所有,剩余的是质数  
     return 1 ;  
}  

ON素数打表
const int maxn = 1e4+100;
int prime[maxn+3];
void init(){
    memset(prime, 0, sizeof(prime));
    for(int i=2; i<=maxn; ++i){
        if(!prime[i]) prime[++prime[0]] = i;
        for(int j=1; j<=prime[0]
&&prime[j]*i<=maxn; ++j){
            prime[prime[j]*i] = 1;
            if(i%prime[j] == 0) break;
        }
    }
}
Miller-Rabbin测试(随机算法):
现在我们只需要多次寻找不超过n-1基并检验是否有a^(n-1)≡1(mod n),如果一直有, 那么这个数就是一个素数,否则可以立即判定这个数是个合数。
检验时使用快速幂优化,可以使复杂度降至O(slogn),这里s为选取基的次数。可以证明,出错的概率不大于1/(2^s),因此s取到几十就差不多了。注意对2要进行特判。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL gcd(LL x, LL y){
    if (!y) return x;
    return (y, x%y);
}
LL pow(LL a, LL x, LL mod){
    LL ans = 1;
    while(x){
        if (x & 1) (ans *= a) %= mod;
        (a *= a) %= mod;
        x >>= 1;
    }
    return ans;
}
bool MRT(LL x){
    if (x == 2) return true;
    for (LL i = 1; i <= 30; ++i){
        LL now = rand()%(x-2) + 2;
        if (pow(now, x-1, x) != 1) 
return false;
    }
    return true;
}
int main(){
    int n;LL x;
    scanf("%d", &n);
    while(n--){
        scanf("%I64d", &x);
        if (MRT(x)) printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值