PCA 主成分分析 Matlab

这段博客内容讲述了如何运用Matlab进行主成分分析(PCA)。首先,从Excel文件导入数据并进行标准化处理,接着计算相关系数矩阵的特征值和特征向量。通过设定信息保留率,确定主成分的数量,并提取相应的特征向量。最后,计算各评价对象的主成分得分,按总分降序排列展示结果。该方法有助于数据的降维和关键特征的识别。
摘要由CSDN通过智能技术生成

记得有些东西要改

%% 数据导入处理
clc
clear all
A = xlsread('数据绝对地址.xlsx','B2:I16');
%% 数据标准化处理
a = size(A,1);
b = size(A,2);
for i = 1:b
    SA(:,i) = (A(:,i) - mean(A(:,i)))/std(A(:,i));
end
%% 计算相关系数矩阵的特征值和特征向量
CM = corrcoef(SA);                          %计算相关系数矩阵
[V,D] = eig(CM);                            %计算特征值和特征向量
 
for j = 1:b
    DS(j,1)=D(b+1-j,b+1-j);                 %对特征值按降序排列
end
for i = 1:b
    DS(i,2) = DS(i,1)/sum(DS(:,1));         %贡献率
    DS(i,3) = sum(DS(1:i,1))/sum(DS(:,1));  %累计贡献率
end
 
%% 选择主成分及对应的特征向量
T = 0.9;    %主成分保留率
for K = 1:b
    if DS(K,3) >= T
        Com_num = K;
        break
    end
end
%% 提取主成分对应的特征向量
for j = 1:Com_num
    PV(:,j)=V(:,b+1-j);
end
%% 计算个评价对象的主成分的分
new_score = SA*PV;
for i = 1:a
    total_score(i,1)= sum(new_score(i,:));
    total_score(i,2)= i;
end
result_report = [new_score,total_score];    %将各主成分的分与总分放在同一个举证中
result_report = sortrows(result_report,-4); %将总分降序排列
%% 输出模型及结果报告
disp('特征值及其贡献率、累计贡献率:')
DS
disp('信息保留率T对应的主成分与特征向量:')
Com_num
PV
disp('主成分的分及排序(按第四列的总分进行降序排列,前3列为各主成分得分,第五列为企业编号)')
result_report

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值