记得有些东西要改
%% 数据导入处理
clc
clear all
A = xlsread('数据绝对地址.xlsx','B2:I16');
%% 数据标准化处理
a = size(A,1);
b = size(A,2);
for i = 1:b
SA(:,i) = (A(:,i) - mean(A(:,i)))/std(A(:,i));
end
%% 计算相关系数矩阵的特征值和特征向量
CM = corrcoef(SA); %计算相关系数矩阵
[V,D] = eig(CM); %计算特征值和特征向量
for j = 1:b
DS(j,1)=D(b+1-j,b+1-j); %对特征值按降序排列
end
for i = 1:b
DS(i,2) = DS(i,1)/sum(DS(:,1)); %贡献率
DS(i,3) = sum(DS(1:i,1))/sum(DS(:,1)); %累计贡献率
end
%% 选择主成分及对应的特征向量
T = 0.9; %主成分保留率
for K = 1:b
if DS(K,3) >= T
Com_num = K;
break
end
end
%% 提取主成分对应的特征向量
for j = 1:Com_num
PV(:,j)=V(:,b+1-j);
end
%% 计算个评价对象的主成分的分
new_score = SA*PV;
for i = 1:a
total_score(i,1)= sum(new_score(i,:));
total_score(i,2)= i;
end
result_report = [new_score,total_score]; %将各主成分的分与总分放在同一个举证中
result_report = sortrows(result_report,-4); %将总分降序排列
%% 输出模型及结果报告
disp('特征值及其贡献率、累计贡献率:')
DS
disp('信息保留率T对应的主成分与特征向量:')
Com_num
PV
disp('主成分的分及排序(按第四列的总分进行降序排列,前3列为各主成分得分,第五列为企业编号)')
result_report