利用matlab求解方程(组) 求解一个简单方程x+1=100的解为x0syms xx0=solve(x+1-100,x)非线性方程的例子C2x^2+C1x=C0的解x1,x2syms C0 C1 C2 xsolve(C2x^2+C1x-C0,x)
Hessian 矩阵(海塞矩阵) 1. 海塞矩阵定义:它是一个由多变量实值函数的所有二阶偏导数组成的方块矩阵2. 数学描述:假设有一实值函数 f(x1,x2,…,xn) ,如果 f的所有二阶偏导数都存在并在定义域内连续,那么函数 f的海塞矩阵为:或者使用下标记号表示为:...
控制领域PV,SP,MV,CV,DV 1、工业过程的输入通常分为两类:1.1可控输入(控制输入),也称为操作变量(Manipulated Variable,MV);1.2 不可控输入,即干扰变量(Disturbance Variable,DV),包含可测干扰和不可测干扰。2. 动态控制的目的:克服DV的影响,并使得被控变量(控制变量,Controlled Varible,CV)具有期望的动态特性,对于可测DV,在其到CV的模型已知的前提下可通过前馈加以补偿,所以可测DV也称为前馈变量(FeadForward Variable,FF)。
拉塞尔不变性定理 ( LaSalle‘s invariance principle ) 最近想复习一下现代控制理论,在B站看到了DR_CAN大神做的视频,但对其中涉及的拉塞尔不变性定理理解地不太好,特地查了一下,写下来与君分享。例子:带摩擦的单摆系统
爱普生墨仓式打印机故障检查,卡纸,清洗打印头,补充墨水详解(非常实用) 爱普生墨仓式打印机(L616X,L617X,L619X,L416X,L316X)首先检查是否卡纸,卡纸就慢慢的拽出来,下面的内容都是建立在打印机能正常完成整个打印的过程,存在的问题:打印出来的是纯白纸,没有任何显示。1、喷嘴检查麻烦您打印机屏幕点击“设置”菜单,里面找到“维护”按OK进入,里面找到“喷嘴检查”选项按OK,然后选择开始打印按钮,打印一张喷嘴检查页,看一下打印纸张左上方图案,有没有缺色/串色或者断线等情况呢?上图是正常的喷嘴检查页显示图案,作者检查的时候,是一张纯白纸,说明存在问题,这
符号函数sign,感知机线性模型无法解决异或问题 1、符号函数sign又叫sgn,意思是符号。符号函数(一般用sign(x)表示)是很有用的一类函数,能够帮助我们在几何画板中实现一些直接实现有困难的构造。 符号函数 能够把函数的符号析离出来 。如下图,在数学和计算机运算中,其功能是取某个数的符号(正或负):当x>0,sign(x)=1;当x=0,sign(x)=0;当x<0, sign(x)=-1;在通信中,sign(t)表示这样一种信号:当t≥0,sign(t)=1; 即从t=0时刻开始,信号的幅度均为1;当t<0,
一文弄懂神经网络中的反向传播法 一文弄懂神经网络中的反向传播法——BackPropagation最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一
主成分分析PCA详解及MATLAB实现 1、读取外部文件数据load gj.txt %把原始保存在纯文本文件gj.txt中的数据,读到MATLAB变量gj中2、数据标准化gj1=zscore(gj); %将原始数据gj进行z-score 标准化3、计算相关系数矩阵(协方差矩阵)r=corrcoef(gj1); %计算相关系数矩阵(协方差矩阵)因为原始数据gj已经标准化成新的数据gj1,所以gj1的协方差矩阵就是相关系数矩阵,相关系数矩阵主对角线上都是1,因为一个变量和自己的相关系数是1。相关系数矩阵r里大多数数据
zscore函数的数据标准化处理及MATLAB实现 一、数据标准化处理在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。数据标准化的方法:有很多种,常用的有“最小—最大标准化”、“Z-sc
均值、方差、标准差、协方差详解及MATLAB实现 一、平均数、方差、标准差、协方差、协方差矩阵的概念1、平均数含义:反映数据集中趋势的一项指标计算公式:指在一组数据中所有数据之和再除以数据的个数2、方差含义:衡量随机变量及其数学期望(即均值)之间的偏离程度。计算公式:各个数据与数学期望之差的平方之和,再除以这组数据的个数。即为:3、标准差含义:反映一个数据集的离散程度,平均数相同的两组数据,标准差未必相同。计算公式:方差的算术平方根(很多帖子写错了,是算术平方根)。标准差与方差的关系:方差=标准差的平方4、协方差
repmat函数的用法(MATLAB) B = repmat(A,m,n)B = repmat(A,[m n])B = repmat(A,[m n p…])这是一个处理大矩阵且内容有重复时使用,其功能是以A的内容堆叠在(MxN)的矩阵B中,B矩阵的大小由MxN及A矩阵的内容决定,如果A是一个3x4x5的矩阵,有B = repmat(A,2,3)则最后的矩阵是6x12x5例如:B=repmat( [1 2;3 4],2,3)B =1 2 1 2 1 23 4 3
MATLAB中求矩阵特征值和特征向量 格式:[X,B]=eig(A) %求矩阵A的特征值和特征向量,其中B的对角线元素是特征值eg:特征值0.8105对应的特征向量是[0.3365 -0.9417];特征值21.2895对应的特征向量是[-0.9417 -0.3365];
若干知识点 1、汉克尔矩阵 (Hankel Matrix) 是指每一条逆对角线上的元素都相等的矩阵,在数字信号处理、数值计算、系统控制等领域均有广泛的应用:2,Kronecker 积,克罗内克积数学上,克罗内克积是两个任意大小的矩阵间的运算。克罗内克积是张量积的特殊形式,以德国数学家利奥波德·克罗内克命名。3,Kronecker不变量...
matlab 中disp()函数用法 使用中括号的原因不仅仅是disp的原因。disp(X)函数只有一个输入,当你有多个字符串作为输入时就会报错。例如:disp(‘Alice is ’ , num2str(12) , ’ years old!’ ); 就会报错–输入参数过多。但是将里边的内容用中括号一括就成了一个字符串。例如:str=[‘Alice is ’ num2str(12) ’ years old!’]; disp(str);上边这句话也就等价于:disp=([‘Alice is ’ num2str(12) ’ years
如何用梯度校正法实现参数的无偏估计 当估计值的数学期望等于参数真值时,参数估计就是无偏估计。当估计值是数据的线性函数时,参数估计就是线性估计。当估计值的均方差最小时,参数估计为一致最小均方误差估计。若线性估计又是一致最小均方误差估计,则称为最优线性无偏估计。如果无偏估计值的方差达到克拉默-尧不等式的下界,则称为有效估计值。若一致性 ,则称 为一致性估计值。在一定条件下,最小二乘估计是最优线性无偏估计,它的估计值是有效估计,而且是一致性估计。极大似然估计在一定条件下渐近有效,而且是一致的。 寻求最小二乘估计和极大似然估计的常用方法是将准则对
信噪比:越高越好 信噪比概念信噪比,英文名称叫做SNR或S/N(SIGNAL-NOISE RATIO),又称为讯噪比。是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。失真同样是“原信号不存在”还有一种东西叫“失真”,失真和噪声实际上有一定关系,二者的不同是失真是有规律的,而噪声则是无规律的,这个以后再讲。信噪比的计量单位是dB,其计算方法是10
size函数MATLAB size(A)函数是用来求矩阵的大小的。比如说一个A是一个3×4的二维矩阵:1、size(A) %直接显示出A大小输出:ans=3 42、s=size(A)%返回一个行向量s,s的第一个元素是矩阵的行数,第二个元素是矩阵的列数输出:s=3 43、[r,c]=size(A)%将矩阵A的行数返回到第一个输出变量r,将矩阵的列数返回到第二个输出变量c输出:r=3c=44、[r,c,m]=size(A)输出:r=3c=4m=1也就说它把二维矩阵当作第三维为1的三维矩阵,这也如