线性回归 西瓜数据集 Python--sklearn

由西瓜的密度、含糖量推断西瓜的成熟度(0代表生,1代表熟)。

  1. 编程实现多变量线性回归,给出在西瓜数据集(见表1)上的结果(即 模型参数)。
  2. 在判断西瓜成熟度这个问题上,请解释密度跟含糖量哪个指标更重要
    要求:提交代码(Python),请包含相关语句注释,以及执行结果截图。
    在这里插入图片描述
  3. 编程实现多变量回归,给出在西瓜数据集(表1)上的结果(模型参数)。
    假如我们想通过色泽、根蒂和敲击声来判断一下西瓜的成熟度。学习任务变为多变量回归。将不同的指标量化得到上述数据集,过程如下图
    在这里插入图片描述
    因此可以对此数值化后的数据集进行线性回归:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

因此直接根据公式计算的代码如下:

在这里插入图片描述

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
xlname=r"C:\Users\34780\Desktop\大二下\机器学习\作业\实验一\西瓜数据
集.xlsx"
data=pd.read_excel(xlname,sheet_name="Sh
Python中,我们可以使用scikit-learn库来实现线性回归,这是一种常用的率回归模型,比如Logistic Regression用于处理二分类问题。西瓜数据集通常是指Iris数据集,这里我们假设你想说的是鸢尾花数据集,而不是西瓜。 首先,你需要安装必要的库: ```bash pip install numpy pandas sklearn matplotlib seaborn ``` 然后,你可以按照以下步骤操作: 1. 加载数据: ```python import pandas as pd from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` 2. 划分训练集和测试集: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 3. 导入并创建LogisticRegression模型: ```python from sklearn.linear_model import LogisticRegression model = LogisticRegression(solver='lbfgs') ``` 4. 训练模型: ```python model.fit(X_train, y_train) ``` 5. 预测并评估: ```python y_pred = model.predict(X_test) accuracy = model.score(X_test, y_test) print(f"Accuracy: {accuracy}") ``` 6. 可视化结果(如果需要): ```python import matplotlib.pyplot as plt import seaborn as sns sns.displot(y_test, hue=y_pred, multiple="dodge", aspect=1.5) plt.title("Confusion Matrix") plt.show() ``` 请注意,对于西瓜数据集3.0(如果存在),因为这是一个假设性的名字,真正的数据集通常是 Iris 或其他类似的数据集。如果你有特定的西瓜数据集,你需要先准备数据才能应用上述过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值