深度学习之路
遇逆境处之泰然
分享语音识别,欢迎一起学习交流。
展开
-
深度学习之路--神经网络结构的学习总结
0. 前言 神经网络是为了解决感知机的缺陷,感知机的权重和偏置需要人为设定,但神经网络可以自动从数据中学习到合适的权重和偏置值,下面给出一个2层的神经网络结构(有些书称为3层),包含输入层、中间层(也称作隐层)和输出层: 1. 激活函数 在感知机介绍中,当输出值大于0时,输出结果为1,当输出值小于等于0时,输出结果为0,在介绍它时并没有明确说明其使用的算法,其实单层感知机使用了阶跃函数...原创 2019-04-16 23:16:50 · 514 阅读 · 0 评论 -
深度学习之路--感知机的学习总结
1. 感知机的基本原理 关于感知机的知识,需要了解的是激活是什么?输入、输出又是什么?权重、偏置又是什么?下面结合一张图说明一下 图中○代表一个神经元,当输入信号传递到神经元时,会被乘以固定的权重值,即,神经元会求取传递到该神经元的所有的和,即, 当所求Sum超过一定阈值时,称神经元被激活,若用数学公式表述如下: 若将上述的移到左边,并用b表示,则b称为偏置,则表达式如下: ...原创 2019-04-12 22:08:34 · 278 阅读 · 0 评论