综述
floyd算法用来求所有点之间的最短路径
对于ABCD四个顶点,用dis[n][n]表示任意两点距离
算法:
1、初始化两点距离,自己为0,无路径为1000
2、加入A点后,更新dis。
3、加入B,更新dis。因为上一步所有以A为一步中间点的dis已求完,所以这一步同时可求以B为中间点和以AB为中间点的dis
4、循环
三个循环里K就是加入的ABCD,i,j代表逐行逐列扫描,比较dis[I][k]+dis[k][j]与dis[i][j]的大小
数据结构
typedef struct Side//边
{
int toVertex;//边指向的点
int data;
struct side *next;
}Side,*sLink;
typedef struct Vertex//顶点
{
int data;
sLink first;//第一个边
}Vertex,AdjList[20];
typedef struct Graph//图
{
AdjList adj;//顶点数组,注意不是指针,用.不用->
int n,v;//顶点数,边数
}Graph,*gLink;
创建
void createGraph(gLink g)
{
int n,v,data;
printf("请输入顶点数与边数");
scanf("%d %d",&n,&v);
g->n = n;
g->v = v;
int i;
for(i=0;i<n;i++)
{
printf("请输入顶点%d权值",i);
scanf("%d",&data);
g->adj[i].data = data;
g->adj[i].first = NULL;
}
printf("请输入边信息");
int v1,v2,da;
for(i=0;i<v;i++)
{
scanf("%d %d %d",&v1,&v2,&da);
sLink s = (sLink)malloc(sizeof(Side));
s->toVertex = v2;
s->next = g->adj[v1].first;
g->adj[v1].first = s;
s->data = da;
}
}
算法
int dis[15][15];
void floyd(gLink g)
{
int i,j,k;
//初始化
for(i=0;i<g->n;i++)
{
for(j=0;j<g->n;j++)
{
dis[i][j]=1000;
}
dis[i][i]=0;
}
for(i=0;i<g->n;i++)
{
sLink s = g->adj[i].first;
while(s)
{
dis[i][s->toVertex]=s->data;
s=s->next;
}
}
//算法
for(k=0;k<g->n;k++)//把第K个点添加到中间点集合中
{
for(i=0;i<g->n;i++)//逐行
{
for(j=0;j<g->n;j++)//逐列
{
if(dis[i][k]+dis[k][j]<dis[i][j])//i-->k-->j
{
dis[i][j] = dis[i][k]+dis[k][j];
}
}
}
}
//输出
for(i=0;i<g->n;i++)
{
for(j=0;j<g->n;j++)
{
printf("%-5d",dis[i][j]);
}
printf("\n");
}
}
主函数
int main()
{
gLink g = (gLink)malloc(sizeof(Graph));
createGraph(g);
floyd(g);
return 0;
}