常见数论模板-gcd,lcm

笔者今天闲的蛋疼,特意来分享两个常用的数论模板,gcd和lcm,不管你是否想要打算法赛,我认为你都需要学过。

好的,首先介绍gcd,它的作用是求出两个数的最大公因数,而利用的数学原理是:辗转相除法。

大致证明过程如下

其算法过程为: 前提:设两数为a,b设其中a 做被除数,b做除数,temp为余数
1、大数放a中、小数放b中;
2、求a/b的余数;
3、若temp=0则b为最大公约数;
4、如果temp!=0则把b的值给a、temp的值给a;
5、返回第二步;

代码实现如下:

int gcd(int a,int b)
{
	return b==0?a:gcd(b,a%b);
}

这里利用三目运算符,让代码最简化。

_gcd函数是algorithm库的,但是笔者认为还是要稍微明白原理

                     

lcm-求最小公倍数,那就很简单了,高中学过的,知道两个数的最大公因数,就知道最小公倍数了

代码如下

int lcm(int a,int b)
{
	return (a/gcd(a,b)*b);
}

笔者就分享到这里,比起更暴力的写法,这样写能在知道原理的前提下提高效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值