numpy中的norm()函数求范数

函数:

norm(x, ord = None, axis = None, keepdims = False)

ord表示求什么类型的范数
在这里插入图片描述
举例说明:

import numpy as np

x = [1,2,3,4]
x1 = np.linalg.norm(x=x, ord=1)
x2 = np.linalg.norm(x=x, ord=2)
x3 = np.linalg.norm(x=x, ord=np.inf)
print(x1)
print(x2)
print(x3)

运行结果:
在这里插入图片描述

axis=0表示对矩阵的每一列求范数,axis=1表示对矩阵的每一行求范数, keeptdims=True表示结果保留二维特性,keepdims=False表示结果不保留二维特性

import numpy as np

x = np.array([[0, 1, 2],
              [3, 4, 5]])
x1 = np.linalg.norm(x=x, ord=1, axis=0, keepdims=True)
x2 = np.linalg.norm(x=x, ord=1, axis=1, keepdims=True)
x3 = np.linalg.norm(x=x, ord=1, axis=0, keepdims=False)
x4 = np.linalg.norm(x=x, ord=1, axis=1, keepdims=False)

print(x1)
print(x2)
print(x3)
print(x4)

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值