历史文献
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
【输入】一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
【输出】若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。
【输入输出范例】
输入:
02/03/04
样例输出:
2002-03-04
2004-02-03
2004-03-02
#include<stdio.h>
#include<string.h>
int main()
{
int x, y, i, g, h;
char date[20];
char a[20][20], min[20] = "19600101", max[20] = "20591231";
while (scanf("%s", &date) != EOF)
{
a[0][0] = '1'; a[0][1] = '9'; a[0][2] = date[0]; a[0][3] = date[1]; a[0][4] = date[3]; a[0][5] = date[4]; a[0][6] = date[6]; a[0][7] = date[7]; a[0][8] = '\0';
a[1][0] = '1'; a[1][1] = '9'; a[1][2] = date[6]; a[1][3] = date[7]; a[1][4] = date[0]; a[1][5] = date[1]; a[1][6] = date[3]; a[1][7] = date[4]; a[1][8] = '\0';
a[2][0] = '1'; a[2][1] = '9'; a[2][2] = date[6]; a[2][3] = date[7]; a[2][4] = date[3]; a[2][5] = date[4]; a[2][6] = date[0]; a[2][7] = date[1]; a[2][8] = '\0';
a[3][0] = '2'; a[3][1] = '0'; a[3][2] = date[0]; a[3][3] = date[1]; a[3][4] = date[3]; a[3][5] = date[4]; a[3][6] = date[6]; a[3][7] = date[7]; a[3][8] = '\0';
a[4][0] = '2'; a[4][1] = '0'; a[4][2] = date[6]; a[4][3] = date[7]; a[4][4] = date[0]; a[4][5] = date[1]; a[4][6] = date[3]; a[4][7] = date[4]; a[4][8] = '\0';
a[5][0] = '2'; a[5][1] = '0'; a[5][2] = date[6]; a[5][3] = date[7]; a[5][4] = date[3]; a[5][5] = date[4]; a[5][6] = date[0]; a[5][7] = date[1]; a[5][8] = '\0';
for (i = 0; i < 6; i++)
{
x = strcmp(a[i], min);
y = strcmp(a[i], max);
g = (a[i][4] - '0') * 10 + a[i][5] - '0';
h = (a[i][6] - '0') * 10 + a[i][7] - '0';
if (g < 1 || g>12 || h < 1 || h>31)
continue;
if (x >= 0 && y <= 0)
printf("%c%c%c%c-%c%c-%c%c\n", a[i][0], a[i][1], a[i][2], a[i][3], a[i][4], a[i][5], a[i][6], a[i][7]);
}
}
return 0;
}
数轴位移
数轴上有n个闭区间:D1,…,Dn。其中区间Di用一对整数[ai, bi]来描述,满足ai < bi。已知这些区间的长度之和至少有10000。所以,通过适当的移动这些区间,你总可以使得他们的“并”覆盖[0, 10000]——也就是说[0, 10000]这个区间内的每一个点都落于至少一个区间内。你希望找一个移动方法,使得位移差最大的那个区间的位移量最小。具体来说,假设你将Di移动到[ai+ci, bi+ci]这个位置。你希望使得maxi{|ci|} 最小。
【输入】
输入的第一行包含一个整数n,表示区间的数量。
接下来有n行,每行2个整数ai, bi,以一个空格分开,表示区间[ai, bi]。
保证区间的长度之和至少是10000。
【输出】
输出一个数字,表示答案。如果答案是整数,只输出整数部分。如果答案不是整数,输出时四舍五入保留一位小数。
【样例输入】
2
10 5010
4980 9980
【样例输出】
20
【样例说明】
第一个区间往左移动10;第二个区间往右移动20。
【样例输入】
4
04000
3000 5000
5001 8000
7000 10000
【样例输出】
0.5
【样例说明】
第2个区间往右移0.5;第3个区间往左移0.5即可。
#include "stdio.h"
#include "stdlib.h"
void main()
{
int number,*a,n,min,max,order[5]={0,0,0,0,0};
float centre=0;
scanf("%d",&number);
a=(int *)malloc(sizeof(int)*number*2);
for(n=0;n<number*2;n++)
scanf("%d",&a[n]);
min=a[0];
max=10000-a[1];
for(n=0;n<(number*2-1);n+=2)
{
order[0]++;
if(a[n]<=min)
{
min=a[n]-0;
order[3]=order[0];
}
if((10000-a[n+1])<=max)
{
max=10000-a[n+1];
order[4]=order[0];
}
if(a[n+1]<a[n+2])
{
centre=a[n+2]-a[n+1];
order[1]=order[0];
order[2]=order[0]+1;
printf("第%d个空间需右移%.2f个单位,第%d个空间需左移%.2f个单位.",order[1],centre/2,order[2],centre/2);
}
centre=0;
}
if(min!=0)
printf("第%d个空间需左移%d个单位。",order[3],min);
if(max!=0)
printf("第%d个空间需右移%d个单位。",order[4],max);
/*for(n=0;n<number;n++)
printf("%d ",a[n]);bug*/
//printf("\n%d %d",min,max);
}
最长公共子串问题
假设有两个字符串(可能包含空格),找出其中最长的公共连续子串,并输出其长度。
输入描述:
输入为两行字符串(可能包含空格),长度均小于等于50
输出描述:
输出为一个整数,表示最长公共连续子串的长度
输入例子:
abcde
abgde
输出例子:
2
ab
de
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
void main()
{
int search();
int string();
void cout();
char a[50],b[50],c[50][50]={'0'};
int max=0,j=0;
scanf("%s %s",a,b);
max=search(a,b);
j=string(a,b,c);
printf("%d\n",max);
cout(c,max,j);
}
void cout(char c[][50],int max,int j)
{
int i=0;
for(;i<j-1;i++)
if(strlen(c[i])==max)
printf("%s\n",c[i]);
}
int string(char a[],char b[],char c[][50])
{
int max=0,x=0,y=0,n=0,m=0,k=0,j=0,i=0;
x=strlen(a);
y=strlen(b);
for(n=0;n<x;n++)
for(m=0;m<y;m++)
{
if(a[n+k]==b[m])
{
c[j][i]=a[n+k];
k++;
i++;
}
else
{
j++;
k=0;
i=0;
}
}
return j;
}
int search(char a[],char b[])
{
int max=0,x=0,y=0,n=0,m=0,k=0;
x=strlen(a);
y=strlen(b);
for(n=0;n<x;n++)
for(m=0;m<y;m++)
{
if(a[n+k]==b[m])
k++;
else
k=0;
if(k>=max)
max=k;
}
return max;
}