BZOJ3209 花神的数论题(数位dp)

【题解】

数位dp的思想 


 

枚举的是二进制数 先预处理出所有i位二进制数中,含j个1的数的个数,就是C(i,j)

然后就是从高位到低位,处理填0还是1的情况 

填0:之后i-1位随机填0/1

填1:紧接着的[n对应的二进制数该位为0]的位只能填0(否则超过n) 

注意该算法计数到的所有情况不含SUM(n)!因此读入时,n++

数位dp是不是基本都要预处理 = = 

#include<stdio.h>
#include<stdlib.h>
#define MOD 10000007
typedef unsigned long long ULL;
ULL c[65][65]={0};
ULL ksm(ULL a,ULL n)
{
    ULL ans;
    a%=MOD;
    if(n==0) return 1;
    if(n==1) return a;
    ans=ksm(a,n/2);
    ans=(ans*ans)%MOD;
    if(n%2==1) ans=(ans*a)%MOD;
    return ans;
}
int main()
{
    ULL n,t,ans=1;
    int i,j,k=0,len=0;
    scanf("%llu",&n);
    n++;
    for(i=0;i<64;i++)//预处理组合数 
    {
        c[i][0]=1;
        for(j=1;j<i;j++)
            c[i][j]=c[i-1][j-1]+c[i-1][j];
        c[i][i]=1;
    }
    for(t=n;t>0;t=t>>1)
        len++;
    for(i=len;i>=1;i--)
        if(n>>(i-1)&1)
        {
            for(j=0;j<i;j++)
                if(j+k!=0) ans=(ans*ksm(j+k,c[i-1][j]))%MOD;//若这一位填0(比它高的位数能填1的都已经填了1)
            k++;//若这一位填1(k:之前填了k个1)
        }
    printf("%llu",ans);
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值