【题解】
先求出这些点的凸包
可以证明,最小的矩形一定与凸包的边有重叠因此,像旋转卡壳一样,逆时针将凸包各边扫一遍,在这个过程中用向量点积、叉积维护最上点,最左点,最右点,即可
注意这样的写法:Cross(ch[q+1]-ch[i+1],ch[i]-ch[i+1]) - Cross(ch[q]-ch[i+1],ch[i]-ch[i+1]) >-eps (不过写成 >0 也能AC。。。)
【代码】
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define eps 1e-10
struct Point
{
double x,y;
Point()
{
x=y=0;
}
};
typedef Point Vector;
Point P[50005],ch[50005],Q[5];
Vector operator + (Vector a,Vector b)
{
a.x+=b.x;
a.y+=b.y;
return a;
}
Vector operator - (Vector a,Vector b)
{
a.x-=b.x;
a.y-=b.y;
return a;
}
Vector operator * (Vector a,double b)
{
a.x*=b;
a.y*=b;
return a;
}
bool operator < (Point a,Point b)
{
return a.x<b.x || ( a.x==b.x && a.y<b.y );
}
bool operator > (Point a,Point b)
{
return a.x>b.x || ( a.x==b.x && a.y>b.y );
}
int dcmp(double x)
{
if(x<=eps&&x>=-eps) return 0;
if(x>0) return 1;
return -1;
}
double Dot(Vector a,Vector b)
{
return a.x*b.x+a.y*b.y;
}
double Cross(Vector a,Vector b)
{
return a.x*b.y-b.x*a.y;
}
double Length(Vector a)
{
return sqrt(a.x*a.x+a.y*a.y);
}
double dis(Point p,Point a,Point b)
{
return fabs(Cross(p-a,b-a))/Length(a-b);
}
Vector xz(Vector a)
{
Vector b;
b.x=-a.y;
b.y=a.x;
return b;
}
Point jiaodian(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
}
void kp(int low,int high)
{
int i=low,j=high;
Point mid=P[(i+j)/2],t;
while(i<j)
{
while(P[i]<mid) i++;
while(P[j]>mid) j--;
if(i<=j)
{
t=P[i];
P[i]=P[j];
P[j]=t;
i++;
j--;
}
}
if(j>low) kp(low,j);
if(i<high) kp(i,high);
}
int main()
{
Vector t;
double ans=-1.0,D,H,L,R;
int n,i,j=1,k,cnt=0,q=2,l,r=2;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%lf%lf",&P[i].x,&P[i].y);
kp(1,n);
for(i=1;i<=n;i++)
{
while( cnt>1 && dcmp( Cross(ch[cnt]-ch[cnt-1],P[i]-ch[cnt-1]) )<=0 ) cnt--;
ch[++cnt]=P[i];
}
k=cnt;
for(i=n-1;i>=1;i--)
{
while( cnt>k && dcmp( Cross(ch[cnt]-ch[cnt-1],P[i]-ch[cnt-1]) )<=0 ) cnt--;
ch[++cnt]=P[i];
}
//printf("(%.2lf,%.2lf) ",ch[i].x,ch[i].y);
for(i=1;i<cnt;i++)
{
D=Length(ch[i]-ch[i+1]);
while( Cross(ch[q+1]-ch[i+1],ch[i]-ch[i+1]) - Cross(ch[q]-ch[i+1],ch[i]-ch[i+1]) > -eps ) q=q%(cnt-1)+1;
while( Dot(ch[r+1]-ch[i+1],ch[i]-ch[i+1]) - Dot(ch[r]-ch[i+1],ch[i]-ch[i+1]) < eps ) r=r%(cnt-1)+1;
if(i==1) l=r;//否则l无法迈出"第一步"
while( Dot(ch[l+1]-ch[i+1],ch[i]-ch[i+1]) - Dot(ch[l]-ch[i+1],ch[i]-ch[i+1]) > -eps ) l=l%(cnt-1)+1;
H=dis(ch[q],ch[i],ch[i+1]);
L=Dot(ch[l]-ch[i+1],ch[i]-ch[i+1])/D;
R=-Dot(ch[r]-ch[i+1],ch[i]-ch[i+1])/D;
if(ans==-1||ans>H*(L+R))
{
ans=H*(L+R);
t=xz(ch[i+1]-ch[i]);
Q[1]=(ch[i]-ch[i+1])*(L/D)+ch[i+1];//从左下开始
Vector e=(ch[i]-ch[i+1])*((D+L)/D);
Q[2]=(ch[i+1]-ch[i])*((D+R)/D)+ch[i];
Q[3]=jiaodian(ch[r],t,ch[q],ch[i+1]-ch[i]);
Q[4]=jiaodian(ch[l],t,ch[q],ch[i+1]-ch[i]);
}
}
printf("%.5lf\n",ans);
for(i=2;i<=4;i++)
if( Q[i].y<Q[j].y || (Q[i].y==Q[j].y&&Q[i].x<Q[j].x) ) j=i;
for(i=0;i<4;i++)
printf("%.5lf %.5lf\n",Q[(j+i-1)%4+1].x,Q[(j+i-1)%4+1].y);
return 0;
}