BZOJ1044 [HAOI2008]木棍分割(二分答案/单调性优化dp+递推优化)

20 篇文章 1 订阅
7 篇文章 0 订阅

【题解】

f[i][j]:前i个数分j段的最小值 
设 f[i][x]:前i个数分j段的最小值 
f[i][x]=min{ max(f[j][x-1],s[i]-s[j]) }
二分答案即可 
然而我的方法类似于斜率优化:
假设j比k优,讨论j,k的大小关系,可得(只写最后结论):
1) j<k(前优) f[j][x-1]<f[k][x-1] 且 s[j]+f[k][x-1]>s[i] 
2) k<j(后优) s[k]+f[j][x-1]
可以根据这个,用单调队列维护一个 j<k时s[j]+f[k][x-1]递增的东西,O(m*n)得出f数组 

设 cnt[i][x]:第一问答案ans1确定后,前i个数分j段,每段长不超过ans1的方案数 
cnt[i][x]=sigma( cnt[j][x-1] ),其中 s[i]-s[j]<=ans1; j<i

注意到对于同一个x,随着i的增大,j的可行区间左端点是不断右移的,而右端点为i-1,因此用k记录左端点,用sum记录区间和,即可做到O(m*n)的递推 

 

【吐槽】

我要吐槽,因为我被这题坑了一个晚上

看网上的博客都写了二分答案的解法,可偏偏我就用了斜率优化dp的分析思路
“设f[i][j]:前i个数分j段的最小值 ……”

竟然还分析出来了。。。

无奈各种诸如<,<=这样的边界情况巨坑,导致我推了一页纸+调了一晚上

 

结果第一问的f[n][m&1]求对了,然而第二问的cnt[n][m&1]并不能在f[i][j]转移到f[n][m&1]时累加cnt[i][j]

为什么:3145切两刀,求f[3][2],显然这唯一一刀切在31和4中间最优,这个子问题答案是4

              可以通过f[3][2]推得f[4][3]=5,然而cnt[4][3]并不是"+=cnt[3][2]",因为答案是5,前三个数分两段,刀也可以切在3和14中间,这被漏掉了。。。

所以总共写了两个dp,在COGS上过掉后,放到BZOJ,竟然TLE了

这一晚上真是逗QAQ

实在懒得改了,把第一问单调性优化dp的摆上来吧

 

另:纪念博客100篇 QAQ

 

【代码】

#include<stdio.h>
#include<stdlib.h>
#define MOD 10007
int s[50005],f[50005][2],cnt[50005][2],q[50005];
int max(int a,int b)
{
	if(a>b) return a;
	return b;
}
int main()
{
	int n,m,i,j,k,head,tail,ans,sum;
	scanf("%d%d",&n,&m);
	m++;
	for(i=1;i<=n;i++)
	{
		scanf("%d",&s[i]);
		s[i]+=s[i-1];
	}
	for(i=1;i<=n;i++)
		f[i][1]=s[i];
	for(j=2;j<=m;j++)//f[i][j]:前i个数分j段的最小值 
	{
		head=0;
		tail=1;
		q[0]=j-1;
		for(i=j;i<=n;i++)
		{
			while( tail-head>1 && s[q[head]]+f[q[head+1]][j-1&1] < s[i] ) head++;
			f[i][j&1]=max(f[q[head]][j-1&1],s[i]-s[q[head]]);
			while( tail-head>1 && f[q[tail-2]][j-1&1]<f[q[tail-1]][j-1&1] && s[q[tail-2]]+f[q[tail-1]][j-1&1] > s[q[tail-1]]+f[i][j-1&1] ) tail--;
			q[tail++]=i;
		}
	}
	ans=f[n][m&1];
	cnt[0][0]=cnt[0][1]=1;
	for(j=1;j<=m;j++)
	{
		k=sum=0;
		for(i=1;i<=n;i++)
		{
			for(;s[i]-s[k]>ans;k++)
				sum-=cnt[k][j-1&1];
			sum+=cnt[i-1][j-1&1];
			cnt[i][j&1]=sum%MOD;//别忘取模!
		}
	}
	printf("%d %d",ans,cnt[n][m&1]);
	return 0;
}

 

 2019.7.4

准备计算机系夏令营,复习DP时又看见这道题。再次拿出来做,再次坑一晚上,终于A掉了。

附上代码,第一问二分答案,第二问状压DP。

#include<cstdio>
#define maxN 50005
#define MOD 10007

using namespace std;

int a[maxN],S[maxN],g[maxN][2],Sg[maxN];
int n,m;

int Min(int a,int b)
{
	if(a<b) return a;
	return b;
}

int Max(int a,int b)
{
	if(a>b) return a;
	return b;
}

int judge(int x)
{
	int i,sum=0,cnt=0;
	for(i=1;i<=n;i++)
	{
		if(a[i]>x) return 0;
		if(sum+a[i]<=x) sum+=a[i];
		else
		{
			cnt++;
			sum=a[i];
		}
	}
	if(cnt>m) return 0;
	return 1;
}

int main()
{
	int i,j,k,maxa=0,left,right,mid,ans1,ans2=0;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		if(maxa<a[i]) maxa=a[i];
		S[i]=a[i]+S[i-1];
	}
	left=maxa;
	right=S[n];
	while(left<right)
	{
		mid=(left+right)/2;
		if(judge(mid)>0) right=mid;
		else left=mid+1;
	}
	ans1=left;
	for(i=1;i<=n;i++)
	{
		if(S[i]<=ans1) g[i][0]=1;
		else g[i][0]=0;
	}
	ans2=g[n][0];
	for(j=1;j<=m;j++)
	{
		Sg[j-1]=0;
		Sg[j]=g[j][(j-1)&1];
		k=j-1;
		for(i=j+1;i<=n;i++)
		{
			while(S[i]-S[k+1]>ans1) k++;
			g[i][j&1]=(Sg[i-1]-Sg[k]+MOD)%MOD;
			Sg[i]=(Sg[i-1]+g[i][(j-1)&1]+MOD)%MOD;
		}
		ans2=(ans2+g[n][j&1]+MOD)%MOD;
	}
	printf("%d %d",ans1,ans2);
	return 0;
}

 

### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值